密集超定系统的可伸缩随机最小二乘求解器

Chander Iyer, H. Avron, G. Kollias, Y. Ineichen, C. Carothers, P. Drineas
{"title":"密集超定系统的可伸缩随机最小二乘求解器","authors":"Chander Iyer, H. Avron, G. Kollias, Y. Ineichen, C. Carothers, P. Drineas","doi":"10.1145/2832080.2832083","DOIUrl":null,"url":null,"abstract":"We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs a batchwise randomized unitary transformation scheme. The batchwise transformation enables our algorithm to scale the distributed memory vanilla implementation of Blendenpik by up to ×3 and provides up to ×7.5 speedup over a state-of-the-art scalable least-squares solver based on the classic QR based algorithm. Experimental evaluations on terabyte scale matrices demonstrate excellent speedups on up to 16384 cores on a Blue Gene/Q supercomputer.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A scalable randomized least squares solver for dense overdetermined systems\",\"authors\":\"Chander Iyer, H. Avron, G. Kollias, Y. Ineichen, C. Carothers, P. Drineas\",\"doi\":\"10.1145/2832080.2832083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs a batchwise randomized unitary transformation scheme. The batchwise transformation enables our algorithm to scale the distributed memory vanilla implementation of Blendenpik by up to ×3 and provides up to ×7.5 speedup over a state-of-the-art scalable least-squares solver based on the classic QR based algorithm. Experimental evaluations on terabyte scale matrices demonstrate excellent speedups on up to 16384 cores on a Blue Gene/Q supercomputer.\",\"PeriodicalId\":259517,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Scala\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Scala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2832080.2832083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832080.2832083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对分布式存储平台,提出了一种快速随机最小二乘求解器。我们的求解器基于Blendenpik算法,但采用了批处理随机化酉变换方案。批处理转换使我们的算法能够将Blendenpik的分布式内存vanilla实现扩展到×3,并提供比基于经典QR算法的最先进的可扩展最小二乘求解器加速到×7.5。在tb规模矩阵上的实验评估表明,在Blue Gene/Q超级计算机上,高达16384个核的加速效果非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable randomized least squares solver for dense overdetermined systems
We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs a batchwise randomized unitary transformation scheme. The batchwise transformation enables our algorithm to scale the distributed memory vanilla implementation of Blendenpik by up to ×3 and provides up to ×7.5 speedup over a state-of-the-art scalable least-squares solver based on the classic QR based algorithm. Experimental evaluations on terabyte scale matrices demonstrate excellent speedups on up to 16384 cores on a Blue Gene/Q supercomputer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信