Kovacic算法在Hess情况下带不动点的重刚体运动问题中的应用

A. S. Kuleshov
{"title":"Kovacic算法在Hess情况下带不动点的重刚体运动问题中的应用","authors":"A. S. Kuleshov","doi":"10.1109/STAB49150.2020.9140715","DOIUrl":null,"url":null,"abstract":"In 1890 W. Hess found new partial case of integrability of Euler – Poisson equations describing the motion of a heavy rigid body about a fixed point. In 1892 P. A. Nekrasov proved that the solution of the problem of motion of a heavy rigid body with a fixed point in a Hess case is reduced to integration the second order linear differential equation. In this paper the derive the corresponding linear differential equation and present its coefficients in the rational form. Using the Kovacic algorithm we proved that the liouvillian solutions of the corresponding second order linear differential equation exists only in the case, when the moving rigid body is a Lagrange top, or in the case when the constant of the area integral is zero.","PeriodicalId":166223,"journal":{"name":"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the Kovacic Algorithm to the Problem of Motion of a Heavy Rigid Body with a Fixed Point in a Hess Case\",\"authors\":\"A. S. Kuleshov\",\"doi\":\"10.1109/STAB49150.2020.9140715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1890 W. Hess found new partial case of integrability of Euler – Poisson equations describing the motion of a heavy rigid body about a fixed point. In 1892 P. A. Nekrasov proved that the solution of the problem of motion of a heavy rigid body with a fixed point in a Hess case is reduced to integration the second order linear differential equation. In this paper the derive the corresponding linear differential equation and present its coefficients in the rational form. Using the Kovacic algorithm we proved that the liouvillian solutions of the corresponding second order linear differential equation exists only in the case, when the moving rigid body is a Lagrange top, or in the case when the constant of the area integral is zero.\",\"PeriodicalId\":166223,\"journal\":{\"name\":\"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAB49150.2020.9140715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB49150.2020.9140715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1890年,W。赫斯发现了描述重刚体绕固定点运动的欧拉-泊松方程可积性的部分新情况。1892年P. a . Nekrasov证明了在Hess情况下带不动点的重刚体运动问题的解可以简化为二阶线性微分方程的积分。本文导出了相应的线性微分方程,并将其系数以有理形式表示出来。利用Kovacic算法证明了相应的二阶线性微分方程的liouvillian解仅在运动刚体为拉格朗日顶或面积积分常数为零的情况下才存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Kovacic Algorithm to the Problem of Motion of a Heavy Rigid Body with a Fixed Point in a Hess Case
In 1890 W. Hess found new partial case of integrability of Euler – Poisson equations describing the motion of a heavy rigid body about a fixed point. In 1892 P. A. Nekrasov proved that the solution of the problem of motion of a heavy rigid body with a fixed point in a Hess case is reduced to integration the second order linear differential equation. In this paper the derive the corresponding linear differential equation and present its coefficients in the rational form. Using the Kovacic algorithm we proved that the liouvillian solutions of the corresponding second order linear differential equation exists only in the case, when the moving rigid body is a Lagrange top, or in the case when the constant of the area integral is zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信