{"title":"开放问题:Voronoi s区域体积的计算公式","authors":"N. N. Medvedev, V. Voloshin","doi":"10.1109/ISVD.2013.14","DOIUrl":null,"url":null,"abstract":"Fast and accurate calculation of the volume of additively weighted Voronoi region (Johnson-Mehl nucleus, or Voronoi S-region) is needed in various physical applications. The problem will be solved if an analytical expression could be derived for volume calculation of the pyramid which base is a piece of the hyperboloid surface.","PeriodicalId":344701,"journal":{"name":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Open Problem: A Formula for Calculation of the Voronoi S-region Volume\",\"authors\":\"N. N. Medvedev, V. Voloshin\",\"doi\":\"10.1109/ISVD.2013.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and accurate calculation of the volume of additively weighted Voronoi region (Johnson-Mehl nucleus, or Voronoi S-region) is needed in various physical applications. The problem will be solved if an analytical expression could be derived for volume calculation of the pyramid which base is a piece of the hyperboloid surface.\",\"PeriodicalId\":344701,\"journal\":{\"name\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2013.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在各种物理应用中需要快速准确地计算加加权Voronoi区域(Johnson-Mehl核或Voronoi s -区域)的体积。若能导出以双曲面为底面的锥体体积计算的解析表达式,则该问题将得到解决。
Open Problem: A Formula for Calculation of the Voronoi S-region Volume
Fast and accurate calculation of the volume of additively weighted Voronoi region (Johnson-Mehl nucleus, or Voronoi S-region) is needed in various physical applications. The problem will be solved if an analytical expression could be derived for volume calculation of the pyramid which base is a piece of the hyperboloid surface.