卷积自编码器在印刷工业质量控制中的图像比较

Stefan Angelov, Milena Lazarova
{"title":"卷积自编码器在印刷工业质量控制中的图像比较","authors":"Stefan Angelov, Milena Lazarova","doi":"10.1109/COMSCI55378.2022.9912573","DOIUrl":null,"url":null,"abstract":"An important problem in the printing industry is the automation of the quality control of the printed materials and timely detection of relevant printing faults. Image quality assessment can be used to support the quality evaluation of the printed material based on comparison of initial input image and a camera captured image of the printed result. Besides the utilization of histogram based analyses and statistical evaluation metrics such as mean squared error and structural similarity index, deep learning techniques can also be applied for image comparison. The paper presents a deep learning approach based on convolutional autoencoder for image comparison utilizing data augmentation and clustering in order to evaluate the quality of printed materials.","PeriodicalId":399680,"journal":{"name":"2022 10th International Scientific Conference on Computer Science (COMSCI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional Autoencoders for Image Comparison in Printing Industry Quality Control\",\"authors\":\"Stefan Angelov, Milena Lazarova\",\"doi\":\"10.1109/COMSCI55378.2022.9912573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in the printing industry is the automation of the quality control of the printed materials and timely detection of relevant printing faults. Image quality assessment can be used to support the quality evaluation of the printed material based on comparison of initial input image and a camera captured image of the printed result. Besides the utilization of histogram based analyses and statistical evaluation metrics such as mean squared error and structural similarity index, deep learning techniques can also be applied for image comparison. The paper presents a deep learning approach based on convolutional autoencoder for image comparison utilizing data augmentation and clustering in order to evaluate the quality of printed materials.\",\"PeriodicalId\":399680,\"journal\":{\"name\":\"2022 10th International Scientific Conference on Computer Science (COMSCI)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Scientific Conference on Computer Science (COMSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSCI55378.2022.9912573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Scientific Conference on Computer Science (COMSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSCI55378.2022.9912573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

印刷行业的一个重要问题是印刷品质量控制的自动化和相关印刷故障的及时发现。图像质量评估可用于支持基于初始输入图像和相机捕获的打印结果图像的比较的印刷材料的质量评估。除了利用基于直方图的分析和统计评价指标,如均方误差和结构相似性指数,深度学习技术也可以用于图像比较。本文提出了一种基于卷积自编码器的图像比较深度学习方法,利用数据增强和聚类来评估印刷材料的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Autoencoders for Image Comparison in Printing Industry Quality Control
An important problem in the printing industry is the automation of the quality control of the printed materials and timely detection of relevant printing faults. Image quality assessment can be used to support the quality evaluation of the printed material based on comparison of initial input image and a camera captured image of the printed result. Besides the utilization of histogram based analyses and statistical evaluation metrics such as mean squared error and structural similarity index, deep learning techniques can also be applied for image comparison. The paper presents a deep learning approach based on convolutional autoencoder for image comparison utilizing data augmentation and clustering in order to evaluate the quality of printed materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信