基于遗传算法的自适应周期扰动观测器参数调整

Xiao Feng, Hisayoshi Muramatsu, S. Katsura
{"title":"基于遗传算法的自适应周期扰动观测器参数调整","authors":"Xiao Feng, Hisayoshi Muramatsu, S. Katsura","doi":"10.1109/IECON.2019.8926764","DOIUrl":null,"url":null,"abstract":"Periodic disturbances occur during repetitive operation of machines in industrial production. Compensation for the periodic disturbances is an important issue to realize proper machine works beacause the periodic disturbances deteriorate machining precision. In order to eliminate the periodic disturbances, an adaptive periodic-disturbance observer (APDOB) has been proposed as an effective method that can also estimate and compensate for frequency-varying periodic disturbances. However, the APDOB has a problem that design of the APDOB is complicated owing to its six design parameters, which need to be empirically adjusted. Here, we propose an approach based on a genetic algorithm (GA) including a Lévy flight to automatically adjust the six design parameters. The proposed method can remove the conventional empirical design. Moreover, the Lévy flight could improve the exploration ability of the GA by optimizing mutation operator and the best solution found by the GA including Lévy flight could improve the performance of the APDOB.","PeriodicalId":187719,"journal":{"name":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter Adjustment Based on Genetic Algorithm for Adaptive Periodic-Disturbance Observer\",\"authors\":\"Xiao Feng, Hisayoshi Muramatsu, S. Katsura\",\"doi\":\"10.1109/IECON.2019.8926764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic disturbances occur during repetitive operation of machines in industrial production. Compensation for the periodic disturbances is an important issue to realize proper machine works beacause the periodic disturbances deteriorate machining precision. In order to eliminate the periodic disturbances, an adaptive periodic-disturbance observer (APDOB) has been proposed as an effective method that can also estimate and compensate for frequency-varying periodic disturbances. However, the APDOB has a problem that design of the APDOB is complicated owing to its six design parameters, which need to be empirically adjusted. Here, we propose an approach based on a genetic algorithm (GA) including a Lévy flight to automatically adjust the six design parameters. The proposed method can remove the conventional empirical design. Moreover, the Lévy flight could improve the exploration ability of the GA by optimizing mutation operator and the best solution found by the GA including Lévy flight could improve the performance of the APDOB.\",\"PeriodicalId\":187719,\"journal\":{\"name\":\"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2019.8926764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2019.8926764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在工业生产中,机器的重复操作会产生周期性的扰动。由于周期扰动会影响加工精度,因此对周期扰动的补偿是保证机床正常工作的一个重要问题。为了消除周期扰动,提出了一种自适应周期扰动观测器(APDOB),作为一种有效的估计和补偿变频周期扰动的方法。但是,由于APDOB有6个设计参数,需要进行经验调整,因此存在设计复杂的问题。在此,我们提出了一种基于遗传算法(GA)的方法来自动调整6个设计参数。该方法可以消除传统的经验设计。此外,通过优化变异算子,lsamvy飞行可以提高遗传算法的搜索能力,遗传算法找到的包含lsamvy飞行的最优解可以提高APDOB的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Adjustment Based on Genetic Algorithm for Adaptive Periodic-Disturbance Observer
Periodic disturbances occur during repetitive operation of machines in industrial production. Compensation for the periodic disturbances is an important issue to realize proper machine works beacause the periodic disturbances deteriorate machining precision. In order to eliminate the periodic disturbances, an adaptive periodic-disturbance observer (APDOB) has been proposed as an effective method that can also estimate and compensate for frequency-varying periodic disturbances. However, the APDOB has a problem that design of the APDOB is complicated owing to its six design parameters, which need to be empirically adjusted. Here, we propose an approach based on a genetic algorithm (GA) including a Lévy flight to automatically adjust the six design parameters. The proposed method can remove the conventional empirical design. Moreover, the Lévy flight could improve the exploration ability of the GA by optimizing mutation operator and the best solution found by the GA including Lévy flight could improve the performance of the APDOB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信