静止砂床如何影响偏心环空中的流动动力学?

M. Bizhani, E. Kuru
{"title":"静止砂床如何影响偏心环空中的流动动力学?","authors":"M. Bizhani, E. Kuru","doi":"10.1115/omae2019-96338","DOIUrl":null,"url":null,"abstract":"\n In the drilling operations, it is common to have a stationary bed of the drilled cuttings in the high angle sections of the wellbore. The bed must be removed in the later stages before running the casing, or when it starts to cause high torque and drag on the drill string. The mere act of circulating drilling fluid, however, may not clean the well (i.e., critical flow rate and shear stress for bed erosion must be reached). In an effort to better understand the underlying mechanisms of bed removal process during hole cleaning, in this paper, we look at how the presence of a stationary sand bed affects the flow field in an eccentric annulus.\n Experiments simulating turbulent flow of water in an eccentric annulus with/without the presence of stationary sand bed have been conducted by using a 9m long horizontal flow loop (with an annular configuration of 95 mm ID outer pipe and 38 mm OD inner pipe). The flow loop was equipped with particle image velocimetry (PIV) system, which was used to collect velocity field data. The PIV data were then used to study the characteristics of the turbulent flow of water in the eccentric annulus. The velocity field and Reynolds stress profiles were analyzed in two planes, one perpendicular to the bed interface and off-center of the annulus, and the other along the center-line of the annulus. Experiments were carried out with the presence of two different height stationary sand beds and also without a sand bed as the control case.\n The extent to which the presence of the sand bed affects the flow appears to be a strong function of the bed height in the annulus. For a small bed height, deviation of the velocity field from the no bed case was slight. In this case, Reynolds normal and shear stress values were lower near the bed interface comparing to the annulus centerline.\n On the other hand, for a flow over a thicker bed, this behavior changed, and the flow became more uniform in the annulus (in terms of turbulence and mean flow properties). The results help in understanding the mechanism of bed erosion under constant pump flow rate. From the practical point of view, data presented here suggest that hole cleaning in an eccentric annulus progressively becomes more difficult as the bed becomes smaller. The results also explain why in long horizontal and extended reach wells often wiper trips are required for proper cleaning of the hole.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Does a Stationary Sand Bed Affect the Flow Dynamics in an Eccentric Annulus?\",\"authors\":\"M. Bizhani, E. Kuru\",\"doi\":\"10.1115/omae2019-96338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the drilling operations, it is common to have a stationary bed of the drilled cuttings in the high angle sections of the wellbore. The bed must be removed in the later stages before running the casing, or when it starts to cause high torque and drag on the drill string. The mere act of circulating drilling fluid, however, may not clean the well (i.e., critical flow rate and shear stress for bed erosion must be reached). In an effort to better understand the underlying mechanisms of bed removal process during hole cleaning, in this paper, we look at how the presence of a stationary sand bed affects the flow field in an eccentric annulus.\\n Experiments simulating turbulent flow of water in an eccentric annulus with/without the presence of stationary sand bed have been conducted by using a 9m long horizontal flow loop (with an annular configuration of 95 mm ID outer pipe and 38 mm OD inner pipe). The flow loop was equipped with particle image velocimetry (PIV) system, which was used to collect velocity field data. The PIV data were then used to study the characteristics of the turbulent flow of water in the eccentric annulus. The velocity field and Reynolds stress profiles were analyzed in two planes, one perpendicular to the bed interface and off-center of the annulus, and the other along the center-line of the annulus. Experiments were carried out with the presence of two different height stationary sand beds and also without a sand bed as the control case.\\n The extent to which the presence of the sand bed affects the flow appears to be a strong function of the bed height in the annulus. For a small bed height, deviation of the velocity field from the no bed case was slight. In this case, Reynolds normal and shear stress values were lower near the bed interface comparing to the annulus centerline.\\n On the other hand, for a flow over a thicker bed, this behavior changed, and the flow became more uniform in the annulus (in terms of turbulence and mean flow properties). The results help in understanding the mechanism of bed erosion under constant pump flow rate. From the practical point of view, data presented here suggest that hole cleaning in an eccentric annulus progressively becomes more difficult as the bed becomes smaller. The results also explain why in long horizontal and extended reach wells often wiper trips are required for proper cleaning of the hole.\",\"PeriodicalId\":444168,\"journal\":{\"name\":\"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在钻井作业中,通常在井筒的高角度段有一个固定的岩屑床。在下套管之前的后期阶段,或者当它开始对钻柱造成高扭矩和阻力时,必须将床层移除。然而,仅仅循环钻井液的作用可能无法清洁油井(即必须达到冲刷床层的临界流速和剪切应力)。为了更好地理解井眼清洗过程中砂层去除过程的潜在机制,本文研究了固定砂层的存在如何影响偏心环空中的流场。采用9米长的水平流动环(外管内径95 mm,内管外径38 mm),在有/没有固定砂层存在的情况下,模拟了偏心环空中水的湍流流动。流环安装了粒子图像测速系统(PIV),用于采集流速场数据。利用PIV数据研究了偏心环空中水的湍流特性。分析了两个平面上的速度场和雷诺应力分布,一个垂直于床层界面和环空中心,另一个沿环空中心线。实验采用两种不同高度的固定沙床和不设沙床作为对照。砂层的存在对流动的影响程度似乎与环空中砂层的高度密切相关。当床层高度较小时,速度场与无床层情况的偏差较小。在这种情况下,与环空中心线相比,床层界面附近的雷诺兹法向和剪切应力值较低。另一方面,对于在较厚的床层上的流动,这种行为发生了变化,流动在环空中变得更加均匀(就湍流和平均流动特性而言)。研究结果有助于理解恒定泵流量下河床侵蚀的机理。从实际的角度来看,本文提供的数据表明,随着层段变小,偏心环空的井眼清洗变得越来越困难。研究结果还解释了为什么在长水平井和大位移井中,通常需要使用刮刀起下钻来正确清洁井眼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Does a Stationary Sand Bed Affect the Flow Dynamics in an Eccentric Annulus?
In the drilling operations, it is common to have a stationary bed of the drilled cuttings in the high angle sections of the wellbore. The bed must be removed in the later stages before running the casing, or when it starts to cause high torque and drag on the drill string. The mere act of circulating drilling fluid, however, may not clean the well (i.e., critical flow rate and shear stress for bed erosion must be reached). In an effort to better understand the underlying mechanisms of bed removal process during hole cleaning, in this paper, we look at how the presence of a stationary sand bed affects the flow field in an eccentric annulus. Experiments simulating turbulent flow of water in an eccentric annulus with/without the presence of stationary sand bed have been conducted by using a 9m long horizontal flow loop (with an annular configuration of 95 mm ID outer pipe and 38 mm OD inner pipe). The flow loop was equipped with particle image velocimetry (PIV) system, which was used to collect velocity field data. The PIV data were then used to study the characteristics of the turbulent flow of water in the eccentric annulus. The velocity field and Reynolds stress profiles were analyzed in two planes, one perpendicular to the bed interface and off-center of the annulus, and the other along the center-line of the annulus. Experiments were carried out with the presence of two different height stationary sand beds and also without a sand bed as the control case. The extent to which the presence of the sand bed affects the flow appears to be a strong function of the bed height in the annulus. For a small bed height, deviation of the velocity field from the no bed case was slight. In this case, Reynolds normal and shear stress values were lower near the bed interface comparing to the annulus centerline. On the other hand, for a flow over a thicker bed, this behavior changed, and the flow became more uniform in the annulus (in terms of turbulence and mean flow properties). The results help in understanding the mechanism of bed erosion under constant pump flow rate. From the practical point of view, data presented here suggest that hole cleaning in an eccentric annulus progressively becomes more difficult as the bed becomes smaller. The results also explain why in long horizontal and extended reach wells often wiper trips are required for proper cleaning of the hole.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信