使用快速算法挖掘关联规则

M. Anandhavalli, Sandip Jain, A. Chakraborti, N. Roy, M. Ghose
{"title":"使用快速算法挖掘关联规则","authors":"M. Anandhavalli, Sandip Jain, A. Chakraborti, N. Roy, M. Ghose","doi":"10.1109/IADCC.2010.5422920","DOIUrl":null,"url":null,"abstract":"The most time consuming operation in Priori-like algorithms for association rule mining is the computation of the frequency of the occurrences of itemsets (called candidates) in the database. In this paper, a fast algorithm has been proposed for generating frequent itemsets without generating candidate itemsets and association rules with multiple consequents. The proposed algorithm uses Boolean vector with relational AND operation to discover frequent itemsets. Experimental results shows that combining Boolean Vector and relational AND operation results in quickly discovering of frequent itemsets and association rules as compared to general Apriori algorithm.","PeriodicalId":249763,"journal":{"name":"2010 IEEE 2nd International Advance Computing Conference (IACC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mining association rules using fast algorithm\",\"authors\":\"M. Anandhavalli, Sandip Jain, A. Chakraborti, N. Roy, M. Ghose\",\"doi\":\"10.1109/IADCC.2010.5422920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most time consuming operation in Priori-like algorithms for association rule mining is the computation of the frequency of the occurrences of itemsets (called candidates) in the database. In this paper, a fast algorithm has been proposed for generating frequent itemsets without generating candidate itemsets and association rules with multiple consequents. The proposed algorithm uses Boolean vector with relational AND operation to discover frequent itemsets. Experimental results shows that combining Boolean Vector and relational AND operation results in quickly discovering of frequent itemsets and association rules as compared to general Apriori algorithm.\",\"PeriodicalId\":249763,\"journal\":{\"name\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2010.5422920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 2nd International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2010.5422920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在用于关联规则挖掘的类优先级算法中,最耗时的操作是计算数据库中项集(称为候选项集)出现的频率。本文提出了一种快速生成频繁项集而不生成候选项集和具有多个结果的关联规则的算法。该算法采用布尔向量和关系与运算来发现频繁项集。实验结果表明,与一般Apriori算法相比,将布尔向量与关系与运算相结合可以快速发现频繁项集和关联规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining association rules using fast algorithm
The most time consuming operation in Priori-like algorithms for association rule mining is the computation of the frequency of the occurrences of itemsets (called candidates) in the database. In this paper, a fast algorithm has been proposed for generating frequent itemsets without generating candidate itemsets and association rules with multiple consequents. The proposed algorithm uses Boolean vector with relational AND operation to discover frequent itemsets. Experimental results shows that combining Boolean Vector and relational AND operation results in quickly discovering of frequent itemsets and association rules as compared to general Apriori algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信