识别决策树学习算法的最佳属性,受到计算机科学中DNA概念的启发

A. Etemadi, M. Ebadzadeh, Mehdi Eatemadi
{"title":"识别决策树学习算法的最佳属性,受到计算机科学中DNA概念的启发","authors":"A. Etemadi, M. Ebadzadeh, Mehdi Eatemadi","doi":"10.1109/ICACTE.2010.5579408","DOIUrl":null,"url":null,"abstract":"Decision trees are some kinds of learning structures which are used to provide approximations on the accurate solutions for new instances using learning data classifications. The core part in a Decision Tree Learning Algorithm is the approach taken in each phase for choosing better attributes. In this paper we tried to develop a new approach for selecting better attributes in training phase of a decision tree using DNA-base algorithms with lower complexity in arithmetic operators.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the best attributes for Decision Tree Learning Algorithms, inspired by DNA concepts, in computer science\",\"authors\":\"A. Etemadi, M. Ebadzadeh, Mehdi Eatemadi\",\"doi\":\"10.1109/ICACTE.2010.5579408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision trees are some kinds of learning structures which are used to provide approximations on the accurate solutions for new instances using learning data classifications. The core part in a Decision Tree Learning Algorithm is the approach taken in each phase for choosing better attributes. In this paper we tried to develop a new approach for selecting better attributes in training phase of a decision tree using DNA-base algorithms with lower complexity in arithmetic operators.\",\"PeriodicalId\":255806,\"journal\":{\"name\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2010.5579408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

决策树是一种学习结构,用于通过学习数据分类为新实例提供精确解的近似。决策树学习算法的核心部分是在每个阶段选择更好属性的方法。在本文中,我们试图开发一种新的方法来选择更好的属性在训练阶段的决策树使用dna为基础的算法具有较低的复杂度的算术运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the best attributes for Decision Tree Learning Algorithms, inspired by DNA concepts, in computer science
Decision trees are some kinds of learning structures which are used to provide approximations on the accurate solutions for new instances using learning data classifications. The core part in a Decision Tree Learning Algorithm is the approach taken in each phase for choosing better attributes. In this paper we tried to develop a new approach for selecting better attributes in training phase of a decision tree using DNA-base algorithms with lower complexity in arithmetic operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信