基于条件号的ESN进化

Yilong Liang, Cuili Yang, Danlei Wang
{"title":"基于条件号的ESN进化","authors":"Yilong Liang, Cuili Yang, Danlei Wang","doi":"10.1109/ISPCE-ASIA57917.2022.9971117","DOIUrl":null,"url":null,"abstract":"Echo state network (ESN) is a kind of recurrent neural network without involving gradient problem. However, the reservoir of ESN often contains hundreds of neurons, whose corresponding high-dimensional state matrix may result in ill-conditioned solution problem. To solve it, the condition number-based evolving ESN (CNEESN) is proposed, whose sub-reservoir is generated by condition number analysis and differential evolution algorithm (DE). Firstly, the influence of condition number on output weight matrix is analyzed. Secondly, the randomly generated singular values are optimized by condition number and DE based optimize strategy. Finally, simulation result on a benchmark dataset has shown the superiority of the proposed CNEESN.","PeriodicalId":197173,"journal":{"name":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condition Number-based Evolving ESN\",\"authors\":\"Yilong Liang, Cuili Yang, Danlei Wang\",\"doi\":\"10.1109/ISPCE-ASIA57917.2022.9971117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echo state network (ESN) is a kind of recurrent neural network without involving gradient problem. However, the reservoir of ESN often contains hundreds of neurons, whose corresponding high-dimensional state matrix may result in ill-conditioned solution problem. To solve it, the condition number-based evolving ESN (CNEESN) is proposed, whose sub-reservoir is generated by condition number analysis and differential evolution algorithm (DE). Firstly, the influence of condition number on output weight matrix is analyzed. Secondly, the randomly generated singular values are optimized by condition number and DE based optimize strategy. Finally, simulation result on a benchmark dataset has shown the superiority of the proposed CNEESN.\",\"PeriodicalId\":197173,\"journal\":{\"name\":\"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9971117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9971117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回声状态网络(ESN)是一种不涉及梯度问题的递归神经网络。然而,回声状态网络的存储库通常包含数百个神经元,其相应的高维状态矩阵可能导致病态解问题。为了解决这一问题,提出了基于条件数的进化回声状态网络(CNEESN),通过条件数分析和差分进化算法(DE)生成其子库。首先,分析了条件数对输出权矩阵的影响。其次,利用条件数和基于DE的优化策略对随机生成的奇异值进行优化;最后,在一个基准数据集上的仿真结果表明了所提出的CNEESN的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Condition Number-based Evolving ESN
Echo state network (ESN) is a kind of recurrent neural network without involving gradient problem. However, the reservoir of ESN often contains hundreds of neurons, whose corresponding high-dimensional state matrix may result in ill-conditioned solution problem. To solve it, the condition number-based evolving ESN (CNEESN) is proposed, whose sub-reservoir is generated by condition number analysis and differential evolution algorithm (DE). Firstly, the influence of condition number on output weight matrix is analyzed. Secondly, the randomly generated singular values are optimized by condition number and DE based optimize strategy. Finally, simulation result on a benchmark dataset has shown the superiority of the proposed CNEESN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信