基于音频信号处理和支持向量机方法的道路类型分类

Daghan Dogan
{"title":"基于音频信号处理和支持向量机方法的道路类型分类","authors":"Daghan Dogan","doi":"10.1109/SIU.2017.7960154","DOIUrl":null,"url":null,"abstract":"In this study, a low-cost system which classifies different road conditions (asphalt, gravel, snowy and stony road) using acoustic signal processing is proposed. Thus it is aimed to estimate road/tire friction forces in the active safety systems. Classical acoustic signal processing methods which are linear predictive coding (LPC), power spectrum (PSC) and mel-frequency cepstrum coefficients (MFCC) are used with minimum variance and maximum distance principle in this system. The classification process is also executed by support vector machine (SVM).","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Road-types classification using audio signal processing and SVM method\",\"authors\":\"Daghan Dogan\",\"doi\":\"10.1109/SIU.2017.7960154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a low-cost system which classifies different road conditions (asphalt, gravel, snowy and stony road) using acoustic signal processing is proposed. Thus it is aimed to estimate road/tire friction forces in the active safety systems. Classical acoustic signal processing methods which are linear predictive coding (LPC), power spectrum (PSC) and mel-frequency cepstrum coefficients (MFCC) are used with minimum variance and maximum distance principle in this system. The classification process is also executed by support vector machine (SVM).\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本研究中,提出了一种低成本的系统,该系统使用声学信号处理对不同的道路状况(沥青,砾石,雪和石质道路)进行分类。因此,它旨在估计主动安全系统中的道路/轮胎摩擦力。该系统采用线性预测编码(LPC)、功率谱(PSC)和梅尔频率倒谱系数(MFCC)等经典的声学信号处理方法,以最小方差和最大距离为原则。分类过程也由支持向量机(SVM)执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road-types classification using audio signal processing and SVM method
In this study, a low-cost system which classifies different road conditions (asphalt, gravel, snowy and stony road) using acoustic signal processing is proposed. Thus it is aimed to estimate road/tire friction forces in the active safety systems. Classical acoustic signal processing methods which are linear predictive coding (LPC), power spectrum (PSC) and mel-frequency cepstrum coefficients (MFCC) are used with minimum variance and maximum distance principle in this system. The classification process is also executed by support vector machine (SVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信