基于一般近似带状逆的代数多重网格法

P. I. Matskanidis, G. Gravvanis
{"title":"基于一般近似带状逆的代数多重网格法","authors":"P. I. Matskanidis, G. Gravvanis","doi":"10.1109/PCi.2012.14","DOIUrl":null,"url":null,"abstract":"Since the introduction of the Algebraic MultiGrid algorithm (AMG) over twenty years ago, significant progress has been made in improving and refining it. In this article, an AMG method is presented using generic approximate banded inverses based on incomplete LU factorization as smoothers. Finally, the applicability and effectiveness of the proposed AMG method on a characteristic two dimensional boundary value problem is demonstrated and numerical results on the convergence behavior and convergence factor are given.","PeriodicalId":131195,"journal":{"name":"2012 16th Panhellenic Conference on Informatics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Algebraic Multigrid Method Based on Generic Approximate Banded Inverses\",\"authors\":\"P. I. Matskanidis, G. Gravvanis\",\"doi\":\"10.1109/PCi.2012.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the introduction of the Algebraic MultiGrid algorithm (AMG) over twenty years ago, significant progress has been made in improving and refining it. In this article, an AMG method is presented using generic approximate banded inverses based on incomplete LU factorization as smoothers. Finally, the applicability and effectiveness of the proposed AMG method on a characteristic two dimensional boundary value problem is demonstrated and numerical results on the convergence behavior and convergence factor are given.\",\"PeriodicalId\":131195,\"journal\":{\"name\":\"2012 16th Panhellenic Conference on Informatics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th Panhellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCi.2012.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th Panhellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCi.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

代数多网格算法(algeaic MultiGrid algorithm, AMG)自二十多年前提出以来,在改进和完善方面取得了重大进展。本文提出了一种基于不完全LU分解的泛型近似带状逆作为平滑器的AMG方法。最后,证明了所提AMG方法在二维特征边值问题上的适用性和有效性,并给出了收敛行为和收敛因子的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Algebraic Multigrid Method Based on Generic Approximate Banded Inverses
Since the introduction of the Algebraic MultiGrid algorithm (AMG) over twenty years ago, significant progress has been made in improving and refining it. In this article, an AMG method is presented using generic approximate banded inverses based on incomplete LU factorization as smoothers. Finally, the applicability and effectiveness of the proposed AMG method on a characteristic two dimensional boundary value problem is demonstrated and numerical results on the convergence behavior and convergence factor are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信