用于监视对象检索的底层特征的最佳组合

Virginia Fernandez Arguedas, K. Chandramouli, Qianni Zhang, E. Izquierdo
{"title":"用于监视对象检索的底层特征的最佳组合","authors":"Virginia Fernandez Arguedas, K. Chandramouli, Qianni Zhang, E. Izquierdo","doi":"10.5220/0003527101870192","DOIUrl":null,"url":null,"abstract":"In this paper, a low-level multi-feature fusion based classifier is presented for studying the performance of an object retrieval method from surveillance videos. The proposed retrieval framework exploits the recent developments in evolutionary computation algorithm based on biologically inspired optimisation techniques. The multi-descriptor space is formed with a combination of four MPEG-7 visual features. The proposed approach has been evaluated against kernel machines for objects extracted from AVSS 2007 dataset.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal combination of low-level features for surveillance object retrieval\",\"authors\":\"Virginia Fernandez Arguedas, K. Chandramouli, Qianni Zhang, E. Izquierdo\",\"doi\":\"10.5220/0003527101870192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low-level multi-feature fusion based classifier is presented for studying the performance of an object retrieval method from surveillance videos. The proposed retrieval framework exploits the recent developments in evolutionary computation algorithm based on biologically inspired optimisation techniques. The multi-descriptor space is formed with a combination of four MPEG-7 visual features. The proposed approach has been evaluated against kernel machines for objects extracted from AVSS 2007 dataset.\",\"PeriodicalId\":103791,\"journal\":{\"name\":\"Proceedings of the International Conference on Signal Processing and Multimedia Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Signal Processing and Multimedia Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003527101870192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003527101870192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于低层次多特征融合的分类器,用于研究监控视频中目标检索方法的性能。提出的检索框架利用了基于生物启发优化技术的进化计算算法的最新发展。多描述符空间由四个MPEG-7视觉特征组合而成。针对AVSS 2007数据集中提取的对象,对所提出的方法进行了核机评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal combination of low-level features for surveillance object retrieval
In this paper, a low-level multi-feature fusion based classifier is presented for studying the performance of an object retrieval method from surveillance videos. The proposed retrieval framework exploits the recent developments in evolutionary computation algorithm based on biologically inspired optimisation techniques. The multi-descriptor space is formed with a combination of four MPEG-7 visual features. The proposed approach has been evaluated against kernel machines for objects extracted from AVSS 2007 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信