基于时间序列预测的差分旋律生成

Xiang Xu, Wei Zhong, Yi Zou, Long Ye, Qin Zhang
{"title":"基于时间序列预测的差分旋律生成","authors":"Xiang Xu, Wei Zhong, Yi Zou, Long Ye, Qin Zhang","doi":"10.1109/ICMEW59549.2023.00067","DOIUrl":null,"url":null,"abstract":"Long-term melody generation may encounter the challenges such as inadequate melodic variation, resulting in monotony or unreasonable melodic variation. In this work, we introduce the time series prediction and propose a method of Music-FED to generate more creative and harmonic melodies. The proposed approach adopts first-order difference to describe the melodic relative motion, and designs a temporal music representation that makes the model more easily aware of the temporal hierarchy of notes. It then learns the distribution of melody motion variation with time series prediction-based model in a non-autoregressive manner. The objective and subjective evaluations demonstrate that the proposed Music-FED can generate pop music melody with high harmony and rich contents to a certain extent.","PeriodicalId":111482,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Melody Generation Based on Time Series Prediction\",\"authors\":\"Xiang Xu, Wei Zhong, Yi Zou, Long Ye, Qin Zhang\",\"doi\":\"10.1109/ICMEW59549.2023.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term melody generation may encounter the challenges such as inadequate melodic variation, resulting in monotony or unreasonable melodic variation. In this work, we introduce the time series prediction and propose a method of Music-FED to generate more creative and harmonic melodies. The proposed approach adopts first-order difference to describe the melodic relative motion, and designs a temporal music representation that makes the model more easily aware of the temporal hierarchy of notes. It then learns the distribution of melody motion variation with time series prediction-based model in a non-autoregressive manner. The objective and subjective evaluations demonstrate that the proposed Music-FED can generate pop music melody with high harmony and rich contents to a certain extent.\",\"PeriodicalId\":111482,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW59549.2023.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW59549.2023.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期的旋律生成可能会遇到旋律变化不足等挑战,导致旋律变化单调或不合理。在这项工作中,我们引入了时间序列预测,并提出了一种Music-FED的方法来产生更多的创造性和和谐的旋律。该方法采用一阶差分来描述旋律的相对运动,并设计了一种时间音乐表示,使模型更容易识别音符的时间层次。然后利用基于时间序列预测的模型以非自回归的方式学习旋律运动变化的分布。客观评价和主观评价表明,所提出的music - fed能够在一定程度上产生和谐度高、内容丰富的流行音乐旋律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Melody Generation Based on Time Series Prediction
Long-term melody generation may encounter the challenges such as inadequate melodic variation, resulting in monotony or unreasonable melodic variation. In this work, we introduce the time series prediction and propose a method of Music-FED to generate more creative and harmonic melodies. The proposed approach adopts first-order difference to describe the melodic relative motion, and designs a temporal music representation that makes the model more easily aware of the temporal hierarchy of notes. It then learns the distribution of melody motion variation with time series prediction-based model in a non-autoregressive manner. The objective and subjective evaluations demonstrate that the proposed Music-FED can generate pop music melody with high harmony and rich contents to a certain extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信