具有记忆的精确梯度方法

Mihai I. Florea
{"title":"具有记忆的精确梯度方法","authors":"Mihai I. Florea","doi":"10.1080/10556788.2022.2091559","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exact gradient methods with memory\",\"authors\":\"Mihai I. Florea\",\"doi\":\"10.1080/10556788.2022.2091559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2091559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2091559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有记忆的不精确梯度方法(IGMM)通过在目标的光滑部分采用分段线性下模型,大大优于梯度方法。然而,辅助问题在每次迭代中只能在一个固定的公差范围内得到解决。控制不精确性的需要缩小了IGMM可以应用的问题范围,降低了最坏情况下的收敛速度。在这项工作中,我们展示了对IGMM的简单修改如何从分析中删除公差参数。所得到的具有记忆的精确梯度法(EGMM)与Bregman距离梯度法/NoLips一样广泛适用,并且具有相同的最坏情况率,在同类中是最好的。在必要的更严格的假设下,我们可以在没有误差积累的情况下加速EGMM,从而得到具有最坏情况率的记忆加速梯度法(AGMM)。在我们的初步计算实验中,EGMM显示出优异的性能,有时甚至超过了加速方法。当模型丢弃旧信息时,AGMM也始终优于快速梯度方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact gradient methods with memory
ABSTRACT The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信