{"title":"具有记忆的精确梯度方法","authors":"Mihai I. Florea","doi":"10.1080/10556788.2022.2091559","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exact gradient methods with memory\",\"authors\":\"Mihai I. Florea\",\"doi\":\"10.1080/10556788.2022.2091559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2091559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2091559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ABSTRACT The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.