从难以区分的几何中恢复正确的重建

Jared Heinly, Enrique Dunn, Jan-Michael Frahm
{"title":"从难以区分的几何中恢复正确的重建","authors":"Jared Heinly, Enrique Dunn, Jan-Michael Frahm","doi":"10.1109/3DV.2014.84","DOIUrl":null,"url":null,"abstract":"Structure-from-motion (SFM) is widely utilized to generate 3D reconstructions from unordered photo-collections. However, in the presence of non unique, symmetric, or otherwise indistinguishable structure, SFM techniques often incorrectly reconstruct the final model. We propose a method that not only determines if an error is present, but automatically corrects the error in order to produce a correct representation of the scene. We find that by exploiting the co-occurrence information present in the scene's geometry, we can successfully isolate the 3D points causing the incorrect result. This allows us to split an incorrect reconstruction into error-free sub-models that we then correctly merge back together. Our experimental results show that our technique is efficient, robust to a variety of scenes, and outperforms existing methods.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Recovering Correct Reconstructions from Indistinguishable Geometry\",\"authors\":\"Jared Heinly, Enrique Dunn, Jan-Michael Frahm\",\"doi\":\"10.1109/3DV.2014.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structure-from-motion (SFM) is widely utilized to generate 3D reconstructions from unordered photo-collections. However, in the presence of non unique, symmetric, or otherwise indistinguishable structure, SFM techniques often incorrectly reconstruct the final model. We propose a method that not only determines if an error is present, but automatically corrects the error in order to produce a correct representation of the scene. We find that by exploiting the co-occurrence information present in the scene's geometry, we can successfully isolate the 3D points causing the incorrect result. This allows us to split an incorrect reconstruction into error-free sub-models that we then correctly merge back together. Our experimental results show that our technique is efficient, robust to a variety of scenes, and outperforms existing methods.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

运动结构(SFM)被广泛用于从无序的照片集合中生成三维重建。然而,在存在非唯一的、对称的或其他不可区分的结构时,SFM技术通常会错误地重建最终模型。我们提出了一种方法,不仅可以确定是否存在错误,还可以自动纠正错误,以便生成正确的场景表示。我们发现,通过利用场景几何中存在的共现信息,我们可以成功地隔离导致错误结果的3D点。这允许我们将不正确的重建拆分为没有错误的子模型,然后我们将它们正确地合并回一起。实验结果表明,该方法对各种场景具有较强的鲁棒性,并且优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovering Correct Reconstructions from Indistinguishable Geometry
Structure-from-motion (SFM) is widely utilized to generate 3D reconstructions from unordered photo-collections. However, in the presence of non unique, symmetric, or otherwise indistinguishable structure, SFM techniques often incorrectly reconstruct the final model. We propose a method that not only determines if an error is present, but automatically corrects the error in order to produce a correct representation of the scene. We find that by exploiting the co-occurrence information present in the scene's geometry, we can successfully isolate the 3D points causing the incorrect result. This allows us to split an incorrect reconstruction into error-free sub-models that we then correctly merge back together. Our experimental results show that our technique is efficient, robust to a variety of scenes, and outperforms existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信