处理最大边际贝叶斯网络分类器中的缺失特征

Sebastian Tschiatschek, N. Mutsam, F. Pernkopf
{"title":"处理最大边际贝叶斯网络分类器中的缺失特征","authors":"Sebastian Tschiatschek, N. Mutsam, F. Pernkopf","doi":"10.1109/MLSP.2012.6349804","DOIUrl":null,"url":null,"abstract":"The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) records hydroacoustic data to detect nuclear explosions1. This enables verification of the Comprehensive Nuclear-Test-Ban Treaty once it has entered into force. The detection can be considered as a classification problem discriminating noise-like, earthquake-caused and explosion-like data. Classification of the recorded data is challenging because it suffers from large amounts of missing features. While the classification performance of support vector machines has been evaluated, no such results for Bayesian network classifiers are available. We provide these results using classifiers with generatively and discriminatively optimized parameters and employing different imputation methods. In case of discriminatively optimized parameters, Bayesian network classifiers slightly outperform support vector machines. For optimizing the parameters discriminatively, we extend the formulation of maximum margin Bayesian network classifiers to missing features and latent variables. The advantage of these classifiers over classifiers with generatively optimized parameters is demonstrated in experiments.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Handling missing features in maximum margin Bayesian network classifiers\",\"authors\":\"Sebastian Tschiatschek, N. Mutsam, F. Pernkopf\",\"doi\":\"10.1109/MLSP.2012.6349804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) records hydroacoustic data to detect nuclear explosions1. This enables verification of the Comprehensive Nuclear-Test-Ban Treaty once it has entered into force. The detection can be considered as a classification problem discriminating noise-like, earthquake-caused and explosion-like data. Classification of the recorded data is challenging because it suffers from large amounts of missing features. While the classification performance of support vector machines has been evaluated, no such results for Bayesian network classifiers are available. We provide these results using classifiers with generatively and discriminatively optimized parameters and employing different imputation methods. In case of discriminatively optimized parameters, Bayesian network classifiers slightly outperform support vector machines. For optimizing the parameters discriminatively, we extend the formulation of maximum margin Bayesian network classifiers to missing features and latent variables. The advantage of these classifiers over classifiers with generatively optimized parameters is demonstrated in experiments.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

全面禁止核试验条约组织(CTBTO)记录水声数据以探测核爆炸。这样就可以在《全面禁止核试验条约》生效后对其进行核查。该检测可以看作是一个区分类噪声、地震和类爆炸数据的分类问题。记录数据的分类具有挑战性,因为它存在大量缺失的特征。虽然已经对支持向量机的分类性能进行了评估,但对于贝叶斯网络分类器还没有这样的结果。我们使用具有生成和判别优化参数的分类器以及采用不同的输入方法来提供这些结果。在判别优化参数的情况下,贝叶斯网络分类器略优于支持向量机。为了判别优化参数,我们将最大边际贝叶斯网络分类器的公式扩展到缺失特征和潜在变量。实验证明了这些分类器比具有生成优化参数的分类器的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling missing features in maximum margin Bayesian network classifiers
The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) records hydroacoustic data to detect nuclear explosions1. This enables verification of the Comprehensive Nuclear-Test-Ban Treaty once it has entered into force. The detection can be considered as a classification problem discriminating noise-like, earthquake-caused and explosion-like data. Classification of the recorded data is challenging because it suffers from large amounts of missing features. While the classification performance of support vector machines has been evaluated, no such results for Bayesian network classifiers are available. We provide these results using classifiers with generatively and discriminatively optimized parameters and employing different imputation methods. In case of discriminatively optimized parameters, Bayesian network classifiers slightly outperform support vector machines. For optimizing the parameters discriminatively, we extend the formulation of maximum margin Bayesian network classifiers to missing features and latent variables. The advantage of these classifiers over classifiers with generatively optimized parameters is demonstrated in experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信