最小背包多面体的有界系数和节距不等式

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Daniel Bienstock , Yuri Faenza , Igor Malinović , Monaldo Mastrolilli , Ola Svensson , Mark Zuckerberg
{"title":"最小背包多面体的有界系数和节距不等式","authors":"Daniel Bienstock ,&nbsp;Yuri Faenza ,&nbsp;Igor Malinović ,&nbsp;Monaldo Mastrolilli ,&nbsp;Ola Svensson ,&nbsp;Mark Zuckerberg","doi":"10.1016/j.disopt.2020.100567","DOIUrl":null,"url":null,"abstract":"<div><p>The min knapsack problem appears as a major component in the structure of capacitated covering problems. Its polyhedral relaxations have been extensively studied, leading to strong relaxations for networking, scheduling and facility location problems.</p><p>A valid inequality <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>x</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> for a min knapsack instance is said to have pitch <span><math><mrow><mo>≤</mo><mi>π</mi></mrow></math></span>\n(<span><math><mi>π</mi></math></span> a positive integer) if the <span><math><mi>π</mi></math></span> smallest strictly positive <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> sum to at least <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. An inequality with coefficients and right-hand side in <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>π</mi><mo>}</mo></mrow></math></span> has pitch <span><math><mrow><mo>≤</mo><mi>π</mi></mrow></math></span><span>. The notion of pitch has been used for measuring the complexity of valid inequalities for the min knapsack polytope. Separating inequalities of pitch-1 is already NP-Hard. In this paper, we show an algorithm for efficiently separating inequalities with coefficients in </span><span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>π</mi><mo>}</mo></mrow></math></span> for any fixed <span><math><mi>π</mi></math></span><span> up to an arbitrarily small additive error. As a special case, this allows for approximate separation of inequalities with pitch at most 2. We moreover investigate the integrality gap of minimum knapsack instances when bounded pitch inequalities (possibly in conjunction with other inequalities) are added. Among other results, we show that the CG closure of minimum knapsack has unbounded integrality gap even after a constant number of rounds.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"44 ","pages":"Article 100567"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.disopt.2020.100567","citationCount":"4","resultStr":"{\"title\":\"On inequalities with bounded coefficients and pitch for the min knapsack polytope\",\"authors\":\"Daniel Bienstock ,&nbsp;Yuri Faenza ,&nbsp;Igor Malinović ,&nbsp;Monaldo Mastrolilli ,&nbsp;Ola Svensson ,&nbsp;Mark Zuckerberg\",\"doi\":\"10.1016/j.disopt.2020.100567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The min knapsack problem appears as a major component in the structure of capacitated covering problems. Its polyhedral relaxations have been extensively studied, leading to strong relaxations for networking, scheduling and facility location problems.</p><p>A valid inequality <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>x</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> for a min knapsack instance is said to have pitch <span><math><mrow><mo>≤</mo><mi>π</mi></mrow></math></span>\\n(<span><math><mi>π</mi></math></span> a positive integer) if the <span><math><mi>π</mi></math></span> smallest strictly positive <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> sum to at least <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. An inequality with coefficients and right-hand side in <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>π</mi><mo>}</mo></mrow></math></span> has pitch <span><math><mrow><mo>≤</mo><mi>π</mi></mrow></math></span><span>. The notion of pitch has been used for measuring the complexity of valid inequalities for the min knapsack polytope. Separating inequalities of pitch-1 is already NP-Hard. In this paper, we show an algorithm for efficiently separating inequalities with coefficients in </span><span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>π</mi><mo>}</mo></mrow></math></span> for any fixed <span><math><mi>π</mi></math></span><span> up to an arbitrarily small additive error. As a special case, this allows for approximate separation of inequalities with pitch at most 2. We moreover investigate the integrality gap of minimum knapsack instances when bounded pitch inequalities (possibly in conjunction with other inequalities) are added. Among other results, we show that the CG closure of minimum knapsack has unbounded integrality gap even after a constant number of rounds.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"44 \",\"pages\":\"Article 100567\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.disopt.2020.100567\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528620300013\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528620300013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

最小背包问题是有能力覆盖问题结构中的一个重要组成部分。它的多面体松弛被广泛研究,导致网络、调度和设施选址问题的强松弛。对于最小背包实例,如果π最小的严格正αj和至少为α0,则α tx≥α0且α≥0的有效不等式α tx≥α0称为节距≤π(π为正整数)。在{0,1,…,π}中具有系数和右手边的不等式,其节距≤π。节距的概念已被用于测量最小背包多面体的有效不等式的复杂性。分离pitch-1的不等式已经是NP-Hard了。在本文中,我们给出了一种对于任意固定π直到任意小的加性误差有效分离系数为{0,1,…,π}的不等式的算法。作为一个特殊情况,这允许近似分离的不平等与最多2的音高。此外,我们还研究了当有界间距不等式(可能与其他不等式一起)加入时最小背包实例的完整性间隙。在其他结果中,我们证明了最小背包的CG闭包即使经过一定的轮数也具有无界的完整性间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On inequalities with bounded coefficients and pitch for the min knapsack polytope

The min knapsack problem appears as a major component in the structure of capacitated covering problems. Its polyhedral relaxations have been extensively studied, leading to strong relaxations for networking, scheduling and facility location problems.

A valid inequality αTxα0 with α0 for a min knapsack instance is said to have pitch π (π a positive integer) if the π smallest strictly positive αj sum to at least α0. An inequality with coefficients and right-hand side in {0,1,,π} has pitch π. The notion of pitch has been used for measuring the complexity of valid inequalities for the min knapsack polytope. Separating inequalities of pitch-1 is already NP-Hard. In this paper, we show an algorithm for efficiently separating inequalities with coefficients in {0,1,,π} for any fixed π up to an arbitrarily small additive error. As a special case, this allows for approximate separation of inequalities with pitch at most 2. We moreover investigate the integrality gap of minimum knapsack instances when bounded pitch inequalities (possibly in conjunction with other inequalities) are added. Among other results, we show that the CG closure of minimum knapsack has unbounded integrality gap even after a constant number of rounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信