扰动非线性系统的FDI:基于SOS技术的非线性UIO方法

Jun Xu, K. Lum, Lihua Xie, A. Loh
{"title":"扰动非线性系统的FDI:基于SOS技术的非线性UIO方法","authors":"Jun Xu, K. Lum, Lihua Xie, A. Loh","doi":"10.1109/ICCIS.2010.5518549","DOIUrl":null,"url":null,"abstract":"This paper presents a novel unknown input observer (UIO) design method for fault detection and isolation (FDI) of a class of nonlinear affine systems with disturbance. By using Lie geometry and sum-of-squares (SOS) theory as the main tools, a simple and systematic design procedure is proposed. Compared with the traditional UIO design, the rank constraint is much relaxed. Meanwhile, we show that the threshold can be easily obtained from a L2 gain result using a SOS formulation.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FDI of disturbed nonlinear systems: A nonlinear UIO approach with SOS techniques\",\"authors\":\"Jun Xu, K. Lum, Lihua Xie, A. Loh\",\"doi\":\"10.1109/ICCIS.2010.5518549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel unknown input observer (UIO) design method for fault detection and isolation (FDI) of a class of nonlinear affine systems with disturbance. By using Lie geometry and sum-of-squares (SOS) theory as the main tools, a simple and systematic design procedure is proposed. Compared with the traditional UIO design, the rank constraint is much relaxed. Meanwhile, we show that the threshold can be easily obtained from a L2 gain result using a SOS formulation.\",\"PeriodicalId\":445473,\"journal\":{\"name\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.5518549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类具有扰动的非线性仿射系统的故障检测与隔离问题,提出了一种新的未知输入观测器设计方法。以李氏几何和平方和理论为主要工具,提出了一种简单系统的设计方法。与传统的UIO设计相比,秩约束大大放宽。同时,我们证明了使用SOS公式可以很容易地从L2增益结果中获得阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FDI of disturbed nonlinear systems: A nonlinear UIO approach with SOS techniques
This paper presents a novel unknown input observer (UIO) design method for fault detection and isolation (FDI) of a class of nonlinear affine systems with disturbance. By using Lie geometry and sum-of-squares (SOS) theory as the main tools, a simple and systematic design procedure is proposed. Compared with the traditional UIO design, the rank constraint is much relaxed. Meanwhile, we show that the threshold can be easily obtained from a L2 gain result using a SOS formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信