基于不确定性和干扰估计的增强学习鲁棒性改进

Jinsuk Choi, H. Park, Jongchan Baek, Soohee Han
{"title":"基于不确定性和干扰估计的增强学习鲁棒性改进","authors":"Jinsuk Choi, H. Park, Jongchan Baek, Soohee Han","doi":"10.23919/ICCAS55662.2022.10003692","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to improve the robustness of RLs based on model-free uncertainty and disturbance estimator (RL-based UDE). In the real environment, instead of using optimal trajectory and control techniques to perform complex tasks, it learns through RL and supplements robustness by using uncertainty and disturbance estimator (UDE). From UDE, the robotics system can be improved the stability by appropriately canceling the uncertainty and disturbance without efforts to obtain model information; hence the UDE can compensate for the performance degradation of RL when system is non-stationary. In addition, the performance can be improved by reducing the sensor noise from low-pass filter of UDE. It is shown through an experiment that the proposed RL-based UDE provides robustness.","PeriodicalId":129856,"journal":{"name":"2022 22nd International Conference on Control, Automation and Systems (ICCAS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Robustness of Reinforcement Learning Based on Uncertainty and Disturbance Estimator\",\"authors\":\"Jinsuk Choi, H. Park, Jongchan Baek, Soohee Han\",\"doi\":\"10.23919/ICCAS55662.2022.10003692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to improve the robustness of RLs based on model-free uncertainty and disturbance estimator (RL-based UDE). In the real environment, instead of using optimal trajectory and control techniques to perform complex tasks, it learns through RL and supplements robustness by using uncertainty and disturbance estimator (UDE). From UDE, the robotics system can be improved the stability by appropriately canceling the uncertainty and disturbance without efforts to obtain model information; hence the UDE can compensate for the performance degradation of RL when system is non-stationary. In addition, the performance can be improved by reducing the sensor noise from low-pass filter of UDE. It is shown through an experiment that the proposed RL-based UDE provides robustness.\",\"PeriodicalId\":129856,\"journal\":{\"name\":\"2022 22nd International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 22nd International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS55662.2022.10003692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 22nd International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS55662.2022.10003692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于无模型不确定性和扰动估计(RL-based UDE)的改进RLs鲁棒性的方法。在真实环境中,它不是使用最优轨迹和控制技术来执行复杂任务,而是通过RL学习,并通过不确定性和干扰估计器(UDE)来补充鲁棒性。在不需要获取模型信息的情况下,通过适当地消除不确定性和干扰,可以提高机器人系统的稳定性;因此,当系统处于非平稳状态时,UDE可以补偿RL的性能下降。此外,通过降低低通滤波器产生的传感器噪声可以提高传感器的性能。实验表明,该方法具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Robustness of Reinforcement Learning Based on Uncertainty and Disturbance Estimator
This paper proposes a method to improve the robustness of RLs based on model-free uncertainty and disturbance estimator (RL-based UDE). In the real environment, instead of using optimal trajectory and control techniques to perform complex tasks, it learns through RL and supplements robustness by using uncertainty and disturbance estimator (UDE). From UDE, the robotics system can be improved the stability by appropriately canceling the uncertainty and disturbance without efforts to obtain model information; hence the UDE can compensate for the performance degradation of RL when system is non-stationary. In addition, the performance can be improved by reducing the sensor noise from low-pass filter of UDE. It is shown through an experiment that the proposed RL-based UDE provides robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信