gpu动态并行的受控内核启动

Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Adwait Jog, Sreepathi Pai, M. Ibrahim, M. Kandemir, C. Das
{"title":"gpu动态并行的受控内核启动","authors":"Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Adwait Jog, Sreepathi Pai, M. Ibrahim, M. Kandemir, C. Das","doi":"10.1109/HPCA.2017.14","DOIUrl":null,"url":null,"abstract":"Dynamic parallelism (DP) is a promising feature for GPUs, which allows on-demand spawning of kernels on the GPU without any CPU intervention. However, this feature has two major drawbacks. First, the launching of GPU kernels can incur significant performance penalties. Second, dynamically-generated kernels are not always able to efficiently utilize the GPU cores due to hardware-limits. To address these two concerns cohesively, we propose SPAWN, a runtime framework that controls the dynamically-generated kernels, thereby directly reducing the associated launch overheads and queuing latency. Moreover, it allows a better mix of dynamically-generated and original (parent) kernels for the scheduler to effectively hide the remaining overheads and improve the utilization of the GPU resources. Our results show that, across 13 benchmarks, SPAWN achieves 69% and 57% speedup over the flat (non-DP) implementation and baseline DP, respectively.","PeriodicalId":118950,"journal":{"name":"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Controlled Kernel Launch for Dynamic Parallelism in GPUs\",\"authors\":\"Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Adwait Jog, Sreepathi Pai, M. Ibrahim, M. Kandemir, C. Das\",\"doi\":\"10.1109/HPCA.2017.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic parallelism (DP) is a promising feature for GPUs, which allows on-demand spawning of kernels on the GPU without any CPU intervention. However, this feature has two major drawbacks. First, the launching of GPU kernels can incur significant performance penalties. Second, dynamically-generated kernels are not always able to efficiently utilize the GPU cores due to hardware-limits. To address these two concerns cohesively, we propose SPAWN, a runtime framework that controls the dynamically-generated kernels, thereby directly reducing the associated launch overheads and queuing latency. Moreover, it allows a better mix of dynamically-generated and original (parent) kernels for the scheduler to effectively hide the remaining overheads and improve the utilization of the GPU resources. Our results show that, across 13 benchmarks, SPAWN achieves 69% and 57% speedup over the flat (non-DP) implementation and baseline DP, respectively.\",\"PeriodicalId\":118950,\"journal\":{\"name\":\"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2017.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

动态并行(DP)是GPU的一个很有前途的特性,它允许在GPU上按需生成内核,而无需任何CPU干预。然而,这个特性有两个主要缺点。首先,启动GPU内核可能会导致显著的性能损失。其次,由于硬件的限制,动态生成的内核并不总是能够有效地利用GPU内核。为了解决这两个问题,我们提出了SPAWN,这是一个运行时框架,它控制动态生成的内核,从而直接减少相关的启动开销和排队延迟。此外,它允许调度器更好地混合动态生成和原始(父)内核,以有效地隐藏剩余的开销并提高GPU资源的利用率。我们的结果表明,在13个基准测试中,SPAWN分别比平坦(非DP)实现和基线DP实现实现了69%和57%的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled Kernel Launch for Dynamic Parallelism in GPUs
Dynamic parallelism (DP) is a promising feature for GPUs, which allows on-demand spawning of kernels on the GPU without any CPU intervention. However, this feature has two major drawbacks. First, the launching of GPU kernels can incur significant performance penalties. Second, dynamically-generated kernels are not always able to efficiently utilize the GPU cores due to hardware-limits. To address these two concerns cohesively, we propose SPAWN, a runtime framework that controls the dynamically-generated kernels, thereby directly reducing the associated launch overheads and queuing latency. Moreover, it allows a better mix of dynamically-generated and original (parent) kernels for the scheduler to effectively hide the remaining overheads and improve the utilization of the GPU resources. Our results show that, across 13 benchmarks, SPAWN achieves 69% and 57% speedup over the flat (non-DP) implementation and baseline DP, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信