Qingbo Zhu, Francis M. David, Christo Frank Devaraj, Zhenmin Li, Yuanyuan Zhou, P. Cao
{"title":"通过功率感知缓存管理降低磁盘存储能耗","authors":"Qingbo Zhu, Francis M. David, Christo Frank Devaraj, Zhenmin Li, Yuanyuan Zhou, P. Cao","doi":"10.1109/HPCA.2004.10022","DOIUrl":null,"url":null,"abstract":"Reducing energy consumption is an important issue for data centers. Among the various components of a data center, storage is one of the biggest consumers of energy. Previous studies have shown that the average idle period for a server disk in a data center is very small compared to the time taken to spin down and spin up. This significantly limits the effectiveness of disk power management schemes. This paper proposes several power-aware storage cache management algorithms that provide more opportunities for the underlying disk power management schemes to save energy. More specifically, we present an off-line power-aware greedy algorithm that is more energy-efficient than Belady’s off-line algorithm (which minimizes cache misses only). We also propose an online power-aware cache replacement algorithm. Our trace-driven simulations show that, compared to LRU, our algorithm saves 16% more disk energy and provides 50% better average response time for OLTP I/O workloads. We have also investigated the effects of four storage cache write policies on disk energy consumption.","PeriodicalId":145009,"journal":{"name":"10th International Symposium on High Performance Computer Architecture (HPCA'04)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"242","resultStr":"{\"title\":\"Reducing Energy Consumption of Disk Storage Using Power-Aware Cache Management\",\"authors\":\"Qingbo Zhu, Francis M. David, Christo Frank Devaraj, Zhenmin Li, Yuanyuan Zhou, P. Cao\",\"doi\":\"10.1109/HPCA.2004.10022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing energy consumption is an important issue for data centers. Among the various components of a data center, storage is one of the biggest consumers of energy. Previous studies have shown that the average idle period for a server disk in a data center is very small compared to the time taken to spin down and spin up. This significantly limits the effectiveness of disk power management schemes. This paper proposes several power-aware storage cache management algorithms that provide more opportunities for the underlying disk power management schemes to save energy. More specifically, we present an off-line power-aware greedy algorithm that is more energy-efficient than Belady’s off-line algorithm (which minimizes cache misses only). We also propose an online power-aware cache replacement algorithm. Our trace-driven simulations show that, compared to LRU, our algorithm saves 16% more disk energy and provides 50% better average response time for OLTP I/O workloads. We have also investigated the effects of four storage cache write policies on disk energy consumption.\",\"PeriodicalId\":145009,\"journal\":{\"name\":\"10th International Symposium on High Performance Computer Architecture (HPCA'04)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"242\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Symposium on High Performance Computer Architecture (HPCA'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2004.10022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Symposium on High Performance Computer Architecture (HPCA'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2004.10022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing Energy Consumption of Disk Storage Using Power-Aware Cache Management
Reducing energy consumption is an important issue for data centers. Among the various components of a data center, storage is one of the biggest consumers of energy. Previous studies have shown that the average idle period for a server disk in a data center is very small compared to the time taken to spin down and spin up. This significantly limits the effectiveness of disk power management schemes. This paper proposes several power-aware storage cache management algorithms that provide more opportunities for the underlying disk power management schemes to save energy. More specifically, we present an off-line power-aware greedy algorithm that is more energy-efficient than Belady’s off-line algorithm (which minimizes cache misses only). We also propose an online power-aware cache replacement algorithm. Our trace-driven simulations show that, compared to LRU, our algorithm saves 16% more disk energy and provides 50% better average response time for OLTP I/O workloads. We have also investigated the effects of four storage cache write policies on disk energy consumption.