μMT:一种数据突变导向的变质关系获取方法

Chang-ai Sun, Yiqiang Liu, Zuoyi Wang, W. Chan
{"title":"μMT:一种数据突变导向的变质关系获取方法","authors":"Chang-ai Sun, Yiqiang Liu, Zuoyi Wang, W. Chan","doi":"10.1145/2896971.2896974","DOIUrl":null,"url":null,"abstract":"When figuring out the expected output for each test case is difficult, metamorphic testing can be applied to alleviate such situations. An involved key challenge is to derive metamorphic relations for the program under test. This paper proposes a data-mutation directed metamorphic relation acquisition methodology called μMT. Experimental results on three case studies show that μMT is feasible in deriving metamorphic relations for numeric applications and the derived metamorphic relations show reasonable fault detection effectiveness.","PeriodicalId":221357,"journal":{"name":"2016 IEEE/ACM 1st International Workshop on Metamorphic Testing (MET)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"μMT: A Data Mutation Directed Metamorphic Relation Acquisition Methodology\",\"authors\":\"Chang-ai Sun, Yiqiang Liu, Zuoyi Wang, W. Chan\",\"doi\":\"10.1145/2896971.2896974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When figuring out the expected output for each test case is difficult, metamorphic testing can be applied to alleviate such situations. An involved key challenge is to derive metamorphic relations for the program under test. This paper proposes a data-mutation directed metamorphic relation acquisition methodology called μMT. Experimental results on three case studies show that μMT is feasible in deriving metamorphic relations for numeric applications and the derived metamorphic relations show reasonable fault detection effectiveness.\",\"PeriodicalId\":221357,\"journal\":{\"name\":\"2016 IEEE/ACM 1st International Workshop on Metamorphic Testing (MET)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 1st International Workshop on Metamorphic Testing (MET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2896971.2896974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 1st International Workshop on Metamorphic Testing (MET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2896971.2896974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

当计算出每个测试用例的预期输出很困难时,可以应用变形测试来缓解这种情况。涉及到的一个关键挑战是为被测程序导出变质关系。提出了一种面向数据突变的变质关系获取方法μMT。三个算例的实验结果表明,μMT在数值应用中推导变质关系是可行的,所推导的变质关系具有合理的故障检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
μMT: A Data Mutation Directed Metamorphic Relation Acquisition Methodology
When figuring out the expected output for each test case is difficult, metamorphic testing can be applied to alleviate such situations. An involved key challenge is to derive metamorphic relations for the program under test. This paper proposes a data-mutation directed metamorphic relation acquisition methodology called μMT. Experimental results on three case studies show that μMT is feasible in deriving metamorphic relations for numeric applications and the derived metamorphic relations show reasonable fault detection effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信