T.L.F. Giraldo, T.E. Delgado, J. Riano, D.G. Castellanos
{"title":"基于遗传算法的混合评价方法特征选择","authors":"T.L.F. Giraldo, T.E. Delgado, J. Riano, D.G. Castellanos","doi":"10.1109/CERMA.2006.113","DOIUrl":null,"url":null,"abstract":"For a given set of samples, a new model is proposed to reduce input feature space, which decreases the learning time of classifiers, but also, improves the prediction accuracy according to the chosen relevance criterion. This model is constructed by decision trees and genetic algorithms, which evaluates by means of k nearest neighbor rule for classification, allowing the evolution model parameters of used genetic algorithm. The training set corresponds to the extracted features from pathological (hypernasality) and non-pathological (normal) speech, acquired from 90 children, 45 examples per class. A comparative analysis between different approaches about feature selection is performed upon experimental results, showing the feasibility of this approach in such a cases involving pathologies recognition","PeriodicalId":179210,"journal":{"name":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Selection Using Hybrid Evaluation Approaches Based on Genetic Algorithms\",\"authors\":\"T.L.F. Giraldo, T.E. Delgado, J. Riano, D.G. Castellanos\",\"doi\":\"10.1109/CERMA.2006.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given set of samples, a new model is proposed to reduce input feature space, which decreases the learning time of classifiers, but also, improves the prediction accuracy according to the chosen relevance criterion. This model is constructed by decision trees and genetic algorithms, which evaluates by means of k nearest neighbor rule for classification, allowing the evolution model parameters of used genetic algorithm. The training set corresponds to the extracted features from pathological (hypernasality) and non-pathological (normal) speech, acquired from 90 children, 45 examples per class. A comparative analysis between different approaches about feature selection is performed upon experimental results, showing the feasibility of this approach in such a cases involving pathologies recognition\",\"PeriodicalId\":179210,\"journal\":{\"name\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2006.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2006.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Selection Using Hybrid Evaluation Approaches Based on Genetic Algorithms
For a given set of samples, a new model is proposed to reduce input feature space, which decreases the learning time of classifiers, but also, improves the prediction accuracy according to the chosen relevance criterion. This model is constructed by decision trees and genetic algorithms, which evaluates by means of k nearest neighbor rule for classification, allowing the evolution model parameters of used genetic algorithm. The training set corresponds to the extracted features from pathological (hypernasality) and non-pathological (normal) speech, acquired from 90 children, 45 examples per class. A comparative analysis between different approaches about feature selection is performed upon experimental results, showing the feasibility of this approach in such a cases involving pathologies recognition