部分单元等效电路方法在非矩形几何中的推广

A. Ruehli, G. Antonini, A. Orlandi
{"title":"部分单元等效电路方法在非矩形几何中的推广","authors":"A. Ruehli, G. Antonini, A. Orlandi","doi":"10.1109/ISEMC.1999.810108","DOIUrl":null,"url":null,"abstract":"We consider the extension of the partial element equivalent circuit approach to non-rectangular problems. This extension is important for printed circuit boards and other EMI problems where non-orthogonal geometries are present. We give a formulation which is a natural extension of the model for orthogonal conductors. The formulation is chosen in such a way that the advantages of the conventional PEEC models are preserved.","PeriodicalId":312828,"journal":{"name":"1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No.99CH36261)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Extension of the partial element equivalent circuit method to non-rectangular geometries\",\"authors\":\"A. Ruehli, G. Antonini, A. Orlandi\",\"doi\":\"10.1109/ISEMC.1999.810108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the extension of the partial element equivalent circuit approach to non-rectangular problems. This extension is important for printed circuit boards and other EMI problems where non-orthogonal geometries are present. We give a formulation which is a natural extension of the model for orthogonal conductors. The formulation is chosen in such a way that the advantages of the conventional PEEC models are preserved.\",\"PeriodicalId\":312828,\"journal\":{\"name\":\"1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No.99CH36261)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No.99CH36261)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.1999.810108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No.99CH36261)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.1999.810108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

研究非矩形问题的部分单元等效电路方法的推广。这个扩展是非正交几何存在的印刷电路板和其他EMI问题很重要。我们给出了一个公式,它是正交导体模型的自然推广。该配方的选择使传统PEEC模型的优点得以保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of the partial element equivalent circuit method to non-rectangular geometries
We consider the extension of the partial element equivalent circuit approach to non-rectangular problems. This extension is important for printed circuit boards and other EMI problems where non-orthogonal geometries are present. We give a formulation which is a natural extension of the model for orthogonal conductors. The formulation is chosen in such a way that the advantages of the conventional PEEC models are preserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信