将描述逻辑学习作为归纳逻辑编程任务

S. Konstantopoulos, A. Charalambidis
{"title":"将描述逻辑学习作为归纳逻辑编程任务","authors":"S. Konstantopoulos, A. Charalambidis","doi":"10.1109/FUZZY.2010.5584417","DOIUrl":null,"url":null,"abstract":"We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Formulating description logic learning as an Inductive Logic Programming task\",\"authors\":\"S. Konstantopoulos, A. Charalambidis\",\"doi\":\"10.1109/FUZZY.2010.5584417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

提出了一种用归纳逻辑规划(ILP)方法来学习描述逻辑(DL)中不确定条件下的描述。该方法基于将多值深度学习证明实现为基本深度学习构造的命题化,然后将该实现作为ILP的背景谓词提供。所提出的方法在东行列车和Iris的多值变化上进行了测试,这是两个众所周知的和研究过的机器学习数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulating description logic learning as an Inductive Logic Programming task
We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信