确定多值命题微积分中演绎问题的一种代数方法

Jin-Zhao Wu, Hongyan Tan
{"title":"确定多值命题微积分中演绎问题的一种代数方法","authors":"Jin-Zhao Wu, Hongyan Tan","doi":"10.1109/ISMVL.1994.302191","DOIUrl":null,"url":null,"abstract":"We show that there is a polynomial over the rational number field Q corresponding to a given propositional formula in a given many-valued logic. Then, to decide whether a propositional formula can be deduced from a finite set of such formulas (deduction problem), we only need to decide whether the polynomial vanishes on an algebraic variety which is related to this formula set. By decomposing this algebraic variety, an algorithm to decide this problem is given.<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An algebraic method to decide the deduction problem in many-valued propositional calculus\",\"authors\":\"Jin-Zhao Wu, Hongyan Tan\",\"doi\":\"10.1109/ISMVL.1994.302191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there is a polynomial over the rational number field Q corresponding to a given propositional formula in a given many-valued logic. Then, to decide whether a propositional formula can be deduced from a finite set of such formulas (deduction problem), we only need to decide whether the polynomial vanishes on an algebraic variety which is related to this formula set. By decomposing this algebraic variety, an algorithm to decide this problem is given.<<ETX>>\",\"PeriodicalId\":137138,\"journal\":{\"name\":\"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1994.302191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

证明了给定多值逻辑中给定命题公式在有理数域Q上存在一个多项式。然后,判断一个命题公式是否可以从一个命题公式的有限集合中演绎出来(演绎问题),我们只需要判断该多项式是否在与该公式集合相关的代数变量上消失。通过对该代数变量的分解,给出了求解该问题的一种算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algebraic method to decide the deduction problem in many-valued propositional calculus
We show that there is a polynomial over the rational number field Q corresponding to a given propositional formula in a given many-valued logic. Then, to decide whether a propositional formula can be deduced from a finite set of such formulas (deduction problem), we only need to decide whether the polynomial vanishes on an algebraic variety which is related to this formula set. By decomposing this algebraic variety, an algorithm to decide this problem is given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信