基于鲁棒多模态线索的二元人类交互识别

Rim Trabelsi, Jagannadan Varadarajan, Yong Pei, Le Zhang, I. Jabri, A. Bouallègue, P. Moulin
{"title":"基于鲁棒多模态线索的二元人类交互识别","authors":"Rim Trabelsi, Jagannadan Varadarajan, Yong Pei, Le Zhang, I. Jabri, A. Bouallègue, P. Moulin","doi":"10.1145/3132515.3132517","DOIUrl":null,"url":null,"abstract":"Activity analysis methods usually tend to focus on elementary human actions but ignore to analyze complex scenarios. In this paper, we focus particularly on classifying interactions between two persons in a supervised fashion. We propose a robust multi-modal proxemic descriptor based on 3D joint locations, depth and color videos. The proposed descriptor incorporates inter-person and intra-person joint distances calculated from 3D skeleton data and multi-frame dense optical flow features obtained from the application of temporal Convolutional neural networks (CNN) on depth and color images. The descriptors from the three modalities are derived from sparse key-frames surrounding high activity content and fused using a linear SVM classifier. Through experiments on two publicly available RGB-D interaction datasets, we show that our method can efficiently classify complex interactions using only short video snippet, outperforming existing state-of-the-art results.","PeriodicalId":395519,"journal":{"name":"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Multi-Modal Cues for Dyadic Human Interaction Recognition\",\"authors\":\"Rim Trabelsi, Jagannadan Varadarajan, Yong Pei, Le Zhang, I. Jabri, A. Bouallègue, P. Moulin\",\"doi\":\"10.1145/3132515.3132517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity analysis methods usually tend to focus on elementary human actions but ignore to analyze complex scenarios. In this paper, we focus particularly on classifying interactions between two persons in a supervised fashion. We propose a robust multi-modal proxemic descriptor based on 3D joint locations, depth and color videos. The proposed descriptor incorporates inter-person and intra-person joint distances calculated from 3D skeleton data and multi-frame dense optical flow features obtained from the application of temporal Convolutional neural networks (CNN) on depth and color images. The descriptors from the three modalities are derived from sparse key-frames surrounding high activity content and fused using a linear SVM classifier. Through experiments on two publicly available RGB-D interaction datasets, we show that our method can efficiently classify complex interactions using only short video snippet, outperforming existing state-of-the-art results.\",\"PeriodicalId\":395519,\"journal\":{\"name\":\"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132515.3132517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132515.3132517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

活动分析方法通常倾向于关注基本的人类行为,而忽略了对复杂场景的分析。在本文中,我们特别关注以监督方式对两个人之间的交互进行分类。提出了一种基于三维关节位置、深度和彩色视频的鲁棒多模态邻近描述符。该描述符结合了从三维骨骼数据计算的人与人之间和人与人之间的关节距离,以及通过在深度和彩色图像上应用时间卷积神经网络(CNN)获得的多帧密集光流特征。来自三种模式的描述符来自围绕高活动内容的稀疏关键帧,并使用线性支持向量机分类器进行融合。通过在两个公开可用的RGB-D交互数据集上的实验,我们表明我们的方法可以仅使用短视频片段有效地分类复杂的交互,优于现有的最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Multi-Modal Cues for Dyadic Human Interaction Recognition
Activity analysis methods usually tend to focus on elementary human actions but ignore to analyze complex scenarios. In this paper, we focus particularly on classifying interactions between two persons in a supervised fashion. We propose a robust multi-modal proxemic descriptor based on 3D joint locations, depth and color videos. The proposed descriptor incorporates inter-person and intra-person joint distances calculated from 3D skeleton data and multi-frame dense optical flow features obtained from the application of temporal Convolutional neural networks (CNN) on depth and color images. The descriptors from the three modalities are derived from sparse key-frames surrounding high activity content and fused using a linear SVM classifier. Through experiments on two publicly available RGB-D interaction datasets, we show that our method can efficiently classify complex interactions using only short video snippet, outperforming existing state-of-the-art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信