基于空间自适应滤波的快速高效高斯噪声图像恢复算法

Tuan-Anh Nguyen, M. Kim, Min-Cheol Hong
{"title":"基于空间自适应滤波的快速高效高斯噪声图像恢复算法","authors":"Tuan-Anh Nguyen, M. Kim, Min-Cheol Hong","doi":"10.1109/PCS.2010.5702438","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spatially adaptive noise removal algorithm using local statistics that consists of two stages: noise detection and removal. To corporate desirable properties into denoising process, the local weighted mean, local weighted activity, and local maximum are defined. With these local statistics, the noise detection function is defined and a modified Gaussian filter is used to suppress the detected noise components. The experimental results demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"271 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast and efficient Gaussian noise image restoration algorithm by spatially adaptive filtering\",\"authors\":\"Tuan-Anh Nguyen, M. Kim, Min-Cheol Hong\",\"doi\":\"10.1109/PCS.2010.5702438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spatially adaptive noise removal algorithm using local statistics that consists of two stages: noise detection and removal. To corporate desirable properties into denoising process, the local weighted mean, local weighted activity, and local maximum are defined. With these local statistics, the noise detection function is defined and a modified Gaussian filter is used to suppress the detected noise components. The experimental results demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"271 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种基于局部统计的空间自适应噪声去除算法,该算法包括两个阶段:噪声检测和去除。定义了局部加权均值、局部加权活度和局部极大值,将期望的性质融入到去噪过程中。利用这些局部统计量,定义噪声检测函数,并使用改进的高斯滤波器抑制检测到的噪声分量。实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and efficient Gaussian noise image restoration algorithm by spatially adaptive filtering
In this paper, we propose a spatially adaptive noise removal algorithm using local statistics that consists of two stages: noise detection and removal. To corporate desirable properties into denoising process, the local weighted mean, local weighted activity, and local maximum are defined. With these local statistics, the noise detection function is defined and a modified Gaussian filter is used to suppress the detected noise components. The experimental results demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信