基于深度神经网络与x向量联合训练的特征增强对噪声鲁棒说话人验证的研究

Joon-Young Yang, Kwan-Ho Park, Joon‐Hyuk Chang, Youngsam Kim, Sangrae Cho
{"title":"基于深度神经网络与x向量联合训练的特征增强对噪声鲁棒说话人验证的研究","authors":"Joon-Young Yang, Kwan-Ho Park, Joon‐Hyuk Chang, Youngsam Kim, Sangrae Cho","doi":"10.1109/ICEIC49074.2020.9051093","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the deep neural network (DNN) based feature enhancement as the denoising frontend of the x-vector speaker verification framework in noisy environments. Firstly, the feature enhancement DNN (FE-DNN) learns the mapping function from the noisy to the clean corpora on the frame-level acoustic feature domain, and then the x-vector network (XvectorNet) is trained on top of the enhanced features. Finally, the separately trained FE-DNN and the XvectorNet are serially concatenated and jointly trained under the supervision of cross-entropy loss. In addition., we adopt the logistic margin softmax layer for training the XvectorNet in order to obtain more discriminative speaker embeddings.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of DNN based Feature Enhancement Jointly Trained with X-Vectors for Noise-Robust Speaker Verification\",\"authors\":\"Joon-Young Yang, Kwan-Ho Park, Joon‐Hyuk Chang, Youngsam Kim, Sangrae Cho\",\"doi\":\"10.1109/ICEIC49074.2020.9051093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the deep neural network (DNN) based feature enhancement as the denoising frontend of the x-vector speaker verification framework in noisy environments. Firstly, the feature enhancement DNN (FE-DNN) learns the mapping function from the noisy to the clean corpora on the frame-level acoustic feature domain, and then the x-vector network (XvectorNet) is trained on top of the enhanced features. Finally, the separately trained FE-DNN and the XvectorNet are serially concatenated and jointly trained under the supervision of cross-entropy loss. In addition., we adopt the logistic margin softmax layer for training the XvectorNet in order to obtain more discriminative speaker embeddings.\",\"PeriodicalId\":271345,\"journal\":{\"name\":\"2020 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC49074.2020.9051093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了基于深度神经网络(DNN)的特征增强作为噪声环境下x向量说话人验证框架的去噪前端。首先,特征增强深度神经网络(FE-DNN)在帧级声学特征域中学习从噪声到干净语料库的映射函数,然后在增强特征的基础上训练x向量网络(XvectorNet)。最后,在交叉熵损失的监督下,将单独训练的FE-DNN和XvectorNet进行串联和联合训练。此外。采用logistic margin softmax层对XvectorNet进行训练,以获得更具判别性的说话人嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of DNN based Feature Enhancement Jointly Trained with X-Vectors for Noise-Robust Speaker Verification
In this paper, we investigate the deep neural network (DNN) based feature enhancement as the denoising frontend of the x-vector speaker verification framework in noisy environments. Firstly, the feature enhancement DNN (FE-DNN) learns the mapping function from the noisy to the clean corpora on the frame-level acoustic feature domain, and then the x-vector network (XvectorNet) is trained on top of the enhanced features. Finally, the separately trained FE-DNN and the XvectorNet are serially concatenated and jointly trained under the supervision of cross-entropy loss. In addition., we adopt the logistic margin softmax layer for training the XvectorNet in order to obtain more discriminative speaker embeddings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信