基于量子力学的机器学习理论

H. Nieto-Chaupis
{"title":"基于量子力学的机器学习理论","authors":"H. Nieto-Chaupis","doi":"10.1109/AI4G50087.2020.9311015","DOIUrl":null,"url":null,"abstract":"We present a theory of Machine Learning based entirely on the formalism of Quantum Mechanics from the fact that the diverse instances on the application of the algorithms would contain certain concepts linked to stochastic. In this manner, the probabilistic formalism of the Quantum Mechanics might be well applied. Thus, we implement the Mitchell's criteria with mathematical methodologies based on the Hilbert's space as well as the employment of quantum operators to describe the behavior of the experience in terms of probabilities. We illustrate the application of this theory through a quantitative analysis of the time evolution of the experience.","PeriodicalId":286271,"journal":{"name":"2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of Machine Learning Based in Quantum Mechanics\",\"authors\":\"H. Nieto-Chaupis\",\"doi\":\"10.1109/AI4G50087.2020.9311015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a theory of Machine Learning based entirely on the formalism of Quantum Mechanics from the fact that the diverse instances on the application of the algorithms would contain certain concepts linked to stochastic. In this manner, the probabilistic formalism of the Quantum Mechanics might be well applied. Thus, we implement the Mitchell's criteria with mathematical methodologies based on the Hilbert's space as well as the employment of quantum operators to describe the behavior of the experience in terms of probabilities. We illustrate the application of this theory through a quantitative analysis of the time evolution of the experience.\",\"PeriodicalId\":286271,\"journal\":{\"name\":\"2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4G50087.2020.9311015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4G50087.2020.9311015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种完全基于量子力学形式的机器学习理论,因为算法应用的不同实例将包含与随机相关的某些概念。这样,就可以很好地应用量子力学的概率形式。因此,我们使用基于希尔伯特空间的数学方法来实现米切尔标准,并使用量子算子来描述概率方面的经验行为。我们通过对经验的时间演变的定量分析来说明这一理论的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory of Machine Learning Based in Quantum Mechanics
We present a theory of Machine Learning based entirely on the formalism of Quantum Mechanics from the fact that the diverse instances on the application of the algorithms would contain certain concepts linked to stochastic. In this manner, the probabilistic formalism of the Quantum Mechanics might be well applied. Thus, we implement the Mitchell's criteria with mathematical methodologies based on the Hilbert's space as well as the employment of quantum operators to describe the behavior of the experience in terms of probabilities. We illustrate the application of this theory through a quantitative analysis of the time evolution of the experience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信