量化Twitter上的内容极化

Muhe Yang, Xidao Wen, Y. Lin, Lingjia Deng
{"title":"量化Twitter上的内容极化","authors":"Muhe Yang, Xidao Wen, Y. Lin, Lingjia Deng","doi":"10.1109/CIC.2017.00047","DOIUrl":null,"url":null,"abstract":"Social media like Facebook and Twitter have become major battlegrounds, with increasingly polarized content disseminated to people having different interests and ideologies. This work examines the extent of content polarization during the 2016 U.S. presidential election, from a unique, \"content\" perspective. We propose a new approach to quantify the polarization of content semantics by leveraging the word embedding representation and clustering metrics. We then propose an evaluation framework to verify the proposed quantitative measurement using a stance classification task. Based on the results, we further explore the extent of content polarization during the election period and how it changed across time, geography, and different types of users. This work contributes to understanding the online \"echo chamber\" phenomenon based on user-generated content.","PeriodicalId":156843,"journal":{"name":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Quantifying Content Polarization on Twitter\",\"authors\":\"Muhe Yang, Xidao Wen, Y. Lin, Lingjia Deng\",\"doi\":\"10.1109/CIC.2017.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media like Facebook and Twitter have become major battlegrounds, with increasingly polarized content disseminated to people having different interests and ideologies. This work examines the extent of content polarization during the 2016 U.S. presidential election, from a unique, \\\"content\\\" perspective. We propose a new approach to quantify the polarization of content semantics by leveraging the word embedding representation and clustering metrics. We then propose an evaluation framework to verify the proposed quantitative measurement using a stance classification task. Based on the results, we further explore the extent of content polarization during the election period and how it changed across time, geography, and different types of users. This work contributes to understanding the online \\\"echo chamber\\\" phenomenon based on user-generated content.\",\"PeriodicalId\":156843,\"journal\":{\"name\":\"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2017.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2017.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

像Facebook和Twitter这样的社交媒体已经成为主要的战场,越来越两极化的内容传播给有着不同兴趣和意识形态的人。这项工作从一个独特的“内容”角度审视了2016年美国总统大选期间的内容极化程度。我们提出了一种利用词嵌入表示和聚类度量来量化内容语义极化的新方法。然后,我们提出了一个评估框架,以验证使用立场分类任务提出的定量测量。在此基础上,我们进一步探讨了选举期间内容极化的程度,以及它在时间、地理和不同类型用户中的变化情况。这项工作有助于理解基于用户生成内容的在线“回音室”现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Content Polarization on Twitter
Social media like Facebook and Twitter have become major battlegrounds, with increasingly polarized content disseminated to people having different interests and ideologies. This work examines the extent of content polarization during the 2016 U.S. presidential election, from a unique, "content" perspective. We propose a new approach to quantify the polarization of content semantics by leveraging the word embedding representation and clustering metrics. We then propose an evaluation framework to verify the proposed quantitative measurement using a stance classification task. Based on the results, we further explore the extent of content polarization during the election period and how it changed across time, geography, and different types of users. This work contributes to understanding the online "echo chamber" phenomenon based on user-generated content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信