新型稀III-V-Ns:从物理到应用

D. Talwar
{"title":"新型稀III-V-Ns:从物理到应用","authors":"D. Talwar","doi":"10.1109/ELECTRO.2009.5441183","DOIUrl":null,"url":null,"abstract":"Unlike the conventional III-V semiconducting alloys where a smaller lattice constant generally causes an increase in the band gap, a smaller covalent radius of N with a larger electronegativity causes a strong bowing parameter in dilute III–V-Ns. Consequently the addition of N in GaAs or InGaAs decreases the band gap (E<inf>g</inf>) dramatically. This strong dependence of E<inf>g</inf> on the N content in III-As-N has provided opportunities to engineer many material properties suitable for the fiber-optical communications at 1.3 and 1.55 □m wavelengths as well as in designing high efficiency solar cells. The purpose of this talk is to address important issues required for understanding the physics and technology of novel dilute III–V-Ns- especially to comprehend the role of N in such materials. We will present the results of our comprehensive analyses of the Fourier transform infrared (FTIR) absorption and Raman scattering data on impurity modes in dilute ternary GaAs<inf>1−x</inf>N<inf>x</inf>, [GaAs<inf>1−x</inf>N<inf>x</inf>] (x ≪ 0.03) and quaternary InGaAs(P)N alloys grown on GaAs [GaP] by metal organic chemical vapor deposition (MOCVD) and solid source molecular beam epitaxy (MBE). For the low composition of N in GaAs<inf>1−x</inf>N<inf>x</inf> [GaAs<inf>1−x</inf>N<inf>x</inf>] (i.e., x ≪ 0.015), we find that most of the N atoms occupy the As [P] sublattice NAs [N<inf>P</inf>]. They prefer, however, moving out of their substitutional sites to more energetically favorable locations at higher x values. To comprehend the large width of the localized vibrational mode (LVM) observed in GaAs<inf>1−x</inf>N<inf>x</inf> near 470 cm<sup>−1</sup>, we have studied the possibilities of Ga-isotopes (<sup>69</sup>Ga and <sup>71</sup>Ga) and/or intrinsic defects participating with NAs in different configurations. Results for the N-local modes and its isotopic shifts are found in good agreement with the FTIR data. Although, the presence of isolated N- interstitial (N<inf>int</inf>) in GaAs<inf>1−x</inf>N<inf>x</inf> is quite unlikely at higher compositions (0.03 ≫ x ≫ 0.015), the formations of non-radiative complex microstructures involving N and/or intrinsic defects are energetically favorable. We discuss the role of such defects on the performance of electronic devices especially photo-detectors and long wavelength vertical cavity surface-emitting lasers (VCSELs).","PeriodicalId":149384,"journal":{"name":"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel dilute III–V-Ns : From physics to applications\",\"authors\":\"D. Talwar\",\"doi\":\"10.1109/ELECTRO.2009.5441183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the conventional III-V semiconducting alloys where a smaller lattice constant generally causes an increase in the band gap, a smaller covalent radius of N with a larger electronegativity causes a strong bowing parameter in dilute III–V-Ns. Consequently the addition of N in GaAs or InGaAs decreases the band gap (E<inf>g</inf>) dramatically. This strong dependence of E<inf>g</inf> on the N content in III-As-N has provided opportunities to engineer many material properties suitable for the fiber-optical communications at 1.3 and 1.55 □m wavelengths as well as in designing high efficiency solar cells. The purpose of this talk is to address important issues required for understanding the physics and technology of novel dilute III–V-Ns- especially to comprehend the role of N in such materials. We will present the results of our comprehensive analyses of the Fourier transform infrared (FTIR) absorption and Raman scattering data on impurity modes in dilute ternary GaAs<inf>1−x</inf>N<inf>x</inf>, [GaAs<inf>1−x</inf>N<inf>x</inf>] (x ≪ 0.03) and quaternary InGaAs(P)N alloys grown on GaAs [GaP] by metal organic chemical vapor deposition (MOCVD) and solid source molecular beam epitaxy (MBE). For the low composition of N in GaAs<inf>1−x</inf>N<inf>x</inf> [GaAs<inf>1−x</inf>N<inf>x</inf>] (i.e., x ≪ 0.015), we find that most of the N atoms occupy the As [P] sublattice NAs [N<inf>P</inf>]. They prefer, however, moving out of their substitutional sites to more energetically favorable locations at higher x values. To comprehend the large width of the localized vibrational mode (LVM) observed in GaAs<inf>1−x</inf>N<inf>x</inf> near 470 cm<sup>−1</sup>, we have studied the possibilities of Ga-isotopes (<sup>69</sup>Ga and <sup>71</sup>Ga) and/or intrinsic defects participating with NAs in different configurations. Results for the N-local modes and its isotopic shifts are found in good agreement with the FTIR data. Although, the presence of isolated N- interstitial (N<inf>int</inf>) in GaAs<inf>1−x</inf>N<inf>x</inf> is quite unlikely at higher compositions (0.03 ≫ x ≫ 0.015), the formations of non-radiative complex microstructures involving N and/or intrinsic defects are energetically favorable. We discuss the role of such defects on the performance of electronic devices especially photo-detectors and long wavelength vertical cavity surface-emitting lasers (VCSELs).\",\"PeriodicalId\":149384,\"journal\":{\"name\":\"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECTRO.2009.5441183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECTRO.2009.5441183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与传统的III-V型半导体合金不同,较小的晶格常数通常会导致带隙的增加,而较小的共价半径和较大的电负性会导致稀释III-V - ns的强弯曲参数。因此,在GaAs或InGaAs中加入N可显著减小带隙(Eg)。Eg对III-As-N中N含量的强烈依赖性为设计许多适合于1.3和1.55□m波长光纤通信以及设计高效太阳能电池的材料特性提供了机会。这次演讲的目的是解决理解新型稀III-V-Ns的物理和技术所需的重要问题,特别是理解N在这些材料中的作用。我们将介绍利用金属有机化学气相沉积(MOCVD)和固体源分子束外延(MBE)在GaAs [GaP]上生长的稀三元GaAs1 - xNx、[GaAs1 - xNx] (x≪0.03)和季系InGaAs(P)N合金中的杂质模式的傅里叶变换红外(FTIR)吸收和拉曼散射数据的综合分析结果。由于GaAs1−xNx [GaAs1−xNx]中N的含量较低(即x≪0.015),我们发现大多数N原子占据As [P]亚晶格NAs [NP]。然而,它们更喜欢在更高的x值下从它们的替代位置移动到能量更有利的位置。为了理解GaAs1−xNx在470 cm−1附近观察到的大宽度局域振动模式(LVM),我们研究了ga同位素(69Ga和71Ga)和/或本征缺陷以不同构型参与NAs的可能性。n局域模态及其同位素位移的计算结果与FTIR数据吻合较好。虽然GaAs1−xNx中孤立的N-间隙(Nint)的存在在较高的成分(0.03 > x > 0.015)下是相当不可能的,但包含N和/或本构缺陷的非辐射复杂微结构的形成在能量上是有利的。我们讨论了这些缺陷对电子器件性能的影响,特别是光电探测器和长波垂直腔面发射激光器(VCSELs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel dilute III–V-Ns : From physics to applications
Unlike the conventional III-V semiconducting alloys where a smaller lattice constant generally causes an increase in the band gap, a smaller covalent radius of N with a larger electronegativity causes a strong bowing parameter in dilute III–V-Ns. Consequently the addition of N in GaAs or InGaAs decreases the band gap (Eg) dramatically. This strong dependence of Eg on the N content in III-As-N has provided opportunities to engineer many material properties suitable for the fiber-optical communications at 1.3 and 1.55 □m wavelengths as well as in designing high efficiency solar cells. The purpose of this talk is to address important issues required for understanding the physics and technology of novel dilute III–V-Ns- especially to comprehend the role of N in such materials. We will present the results of our comprehensive analyses of the Fourier transform infrared (FTIR) absorption and Raman scattering data on impurity modes in dilute ternary GaAs1−xNx, [GaAs1−xNx] (x ≪ 0.03) and quaternary InGaAs(P)N alloys grown on GaAs [GaP] by metal organic chemical vapor deposition (MOCVD) and solid source molecular beam epitaxy (MBE). For the low composition of N in GaAs1−xNx [GaAs1−xNx] (i.e., x ≪ 0.015), we find that most of the N atoms occupy the As [P] sublattice NAs [NP]. They prefer, however, moving out of their substitutional sites to more energetically favorable locations at higher x values. To comprehend the large width of the localized vibrational mode (LVM) observed in GaAs1−xNx near 470 cm−1, we have studied the possibilities of Ga-isotopes (69Ga and 71Ga) and/or intrinsic defects participating with NAs in different configurations. Results for the N-local modes and its isotopic shifts are found in good agreement with the FTIR data. Although, the presence of isolated N- interstitial (Nint) in GaAs1−xNx is quite unlikely at higher compositions (0.03 ≫ x ≫ 0.015), the formations of non-radiative complex microstructures involving N and/or intrinsic defects are energetically favorable. We discuss the role of such defects on the performance of electronic devices especially photo-detectors and long wavelength vertical cavity surface-emitting lasers (VCSELs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信