字段上LCD代码的边界和属性

S. Gannon, H. Kulosman
{"title":"字段上LCD代码的边界和属性","authors":"S. Gannon, H. Kulosman","doi":"10.37418/jcsam.5.1.2","DOIUrl":null,"url":null,"abstract":"In 2020, Pang et al. defined binary $\\text{LCD}\\; [n,k]$ codes with biggest minimal distance, which meets the Griesmer bound [1]. We give a correction to and provide a different proof for [1, Theorem 4.2], provide a different proof for [1, Theorem 4.3], examine properties of LCD ternary codes, and extend some results found in [6] for any $q$ which is a power of an odd prime.","PeriodicalId":361024,"journal":{"name":"Journal of Computer Science and Applied Mathematics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BOUNDS AND PROPERTIES OF LCD CODES OVER FIELDS\",\"authors\":\"S. Gannon, H. Kulosman\",\"doi\":\"10.37418/jcsam.5.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2020, Pang et al. defined binary $\\\\text{LCD}\\\\; [n,k]$ codes with biggest minimal distance, which meets the Griesmer bound [1]. We give a correction to and provide a different proof for [1, Theorem 4.2], provide a different proof for [1, Theorem 4.3], examine properties of LCD ternary codes, and extend some results found in [6] for any $q$ which is a power of an odd prime.\",\"PeriodicalId\":361024,\"journal\":{\"name\":\"Journal of Computer Science and Applied Mathematics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/jcsam.5.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/jcsam.5.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2020年,Pang等人定义了二进制$\text{LCD}\;[n,k]$编码具有最大最小距离,满足Griesmer界[1]。对[1,定理4.2]作了修正并给出了不同的证明,对[1,定理4.3]给出了不同的证明,检验了LCD三进制码的性质,推广了[6]中关于任意奇素数幂$q$的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BOUNDS AND PROPERTIES OF LCD CODES OVER FIELDS
In 2020, Pang et al. defined binary $\text{LCD}\; [n,k]$ codes with biggest minimal distance, which meets the Griesmer bound [1]. We give a correction to and provide a different proof for [1, Theorem 4.2], provide a different proof for [1, Theorem 4.3], examine properties of LCD ternary codes, and extend some results found in [6] for any $q$ which is a power of an odd prime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信