{"title":"使用随机Kronecker替换的多元稀疏插值","authors":"A. Arnold, Daniel S. Roche","doi":"10.1145/2608628.2608674","DOIUrl":null,"url":null,"abstract":"We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Multivariate sparse interpolation using randomized Kronecker substitutions\",\"authors\":\"A. Arnold, Daniel S. Roche\",\"doi\":\"10.1145/2608628.2608674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate sparse interpolation using randomized Kronecker substitutions
We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.