{"title":"基于D-S证据理论的智能服务机器人模块粒度划分评价方法","authors":"S. Jia, Guoliang Zhang, Boyang Li, Mingchao Ding","doi":"10.1109/ICINFA.2016.7831941","DOIUrl":null,"url":null,"abstract":"The granularity partition for functional modules is a fundamental research topic in robot distributed control technology. How to evaluate the module partition scheme with different granularity, and then obtain the optimum scheme is the urgent problem. In this paper, we proposed a novel evaluation strategy for the granularity partition of functional modules in robotic system using RTM as control platform based on D-S evidence theory. The fuzzy clustering algorithm is primarily used to get the collection of granularity partition schemes for RT Components encapsulated by the platform of OpenRTM. As the two source of evidence, the indices of cohesion and coupling for the robotic system are achieved to measure the degree of module independence by analyzing the correlation matrix of RT Components. Then the Dempster's combination rule and the priority method for utility intervals are applied to obtain the optimal partition granularity. In the end, the effectiveness and progressiveness of the novel evaluation strategy are verified by applying it to the robotic 3D mapping system.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation method of module granularity partition for intelligent service robot based on D-S evidence theory\",\"authors\":\"S. Jia, Guoliang Zhang, Boyang Li, Mingchao Ding\",\"doi\":\"10.1109/ICINFA.2016.7831941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The granularity partition for functional modules is a fundamental research topic in robot distributed control technology. How to evaluate the module partition scheme with different granularity, and then obtain the optimum scheme is the urgent problem. In this paper, we proposed a novel evaluation strategy for the granularity partition of functional modules in robotic system using RTM as control platform based on D-S evidence theory. The fuzzy clustering algorithm is primarily used to get the collection of granularity partition schemes for RT Components encapsulated by the platform of OpenRTM. As the two source of evidence, the indices of cohesion and coupling for the robotic system are achieved to measure the degree of module independence by analyzing the correlation matrix of RT Components. Then the Dempster's combination rule and the priority method for utility intervals are applied to obtain the optimal partition granularity. In the end, the effectiveness and progressiveness of the novel evaluation strategy are verified by applying it to the robotic 3D mapping system.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation method of module granularity partition for intelligent service robot based on D-S evidence theory
The granularity partition for functional modules is a fundamental research topic in robot distributed control technology. How to evaluate the module partition scheme with different granularity, and then obtain the optimum scheme is the urgent problem. In this paper, we proposed a novel evaluation strategy for the granularity partition of functional modules in robotic system using RTM as control platform based on D-S evidence theory. The fuzzy clustering algorithm is primarily used to get the collection of granularity partition schemes for RT Components encapsulated by the platform of OpenRTM. As the two source of evidence, the indices of cohesion and coupling for the robotic system are achieved to measure the degree of module independence by analyzing the correlation matrix of RT Components. Then the Dempster's combination rule and the priority method for utility intervals are applied to obtain the optimal partition granularity. In the end, the effectiveness and progressiveness of the novel evaluation strategy are verified by applying it to the robotic 3D mapping system.