{"title":"车辆机械制动与再生制动系统协同策略的实现","authors":"J. Nadeau, M. Boisvert, P. Micheau","doi":"10.1109/VPPC.2014.7007086","DOIUrl":null,"url":null,"abstract":"A hybrid vehicle equipped with a hydraulic and a regenerative brake system needs collaboration between both actuators. It is clearly the case, if the pedal input integrates the driver's brake demands. The challenge is to deal with vehicle safety and recovery efficiency. Thus, this work focuses on the implementation of a cooperative braking strategy, involving brake pressure control and regenerative brake control. The objectives are to trade, until limits, the rear wheel friction brake by regenerative brake and to improve the brake performance. To achieve this, this paper proposes a cooperative brake force distribution strategy. For design purpose, a simulator based on empirical results has been developed and the feasibility of the strategy is evaluated through experimentation.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Implementation of a Cooperative Strategy between a Vehicle's Mechanical and Regenerative Brake System\",\"authors\":\"J. Nadeau, M. Boisvert, P. Micheau\",\"doi\":\"10.1109/VPPC.2014.7007086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid vehicle equipped with a hydraulic and a regenerative brake system needs collaboration between both actuators. It is clearly the case, if the pedal input integrates the driver's brake demands. The challenge is to deal with vehicle safety and recovery efficiency. Thus, this work focuses on the implementation of a cooperative braking strategy, involving brake pressure control and regenerative brake control. The objectives are to trade, until limits, the rear wheel friction brake by regenerative brake and to improve the brake performance. To achieve this, this paper proposes a cooperative brake force distribution strategy. For design purpose, a simulator based on empirical results has been developed and the feasibility of the strategy is evaluated through experimentation.\",\"PeriodicalId\":133160,\"journal\":{\"name\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2014.7007086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of a Cooperative Strategy between a Vehicle's Mechanical and Regenerative Brake System
A hybrid vehicle equipped with a hydraulic and a regenerative brake system needs collaboration between both actuators. It is clearly the case, if the pedal input integrates the driver's brake demands. The challenge is to deal with vehicle safety and recovery efficiency. Thus, this work focuses on the implementation of a cooperative braking strategy, involving brake pressure control and regenerative brake control. The objectives are to trade, until limits, the rear wheel friction brake by regenerative brake and to improve the brake performance. To achieve this, this paper proposes a cooperative brake force distribution strategy. For design purpose, a simulator based on empirical results has been developed and the feasibility of the strategy is evaluated through experimentation.