Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp
{"title":"神经语言模型是好的剽窃者吗?神经释义检测的基准","authors":"Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp","doi":"10.1109/JCDL52503.2021.00065","DOIUrl":null,"url":null,"abstract":"Neural language models such as BERT allow for human-like text paraphrasing. This ability threatens academic integrity, as it aggravates identifying machine-obfuscated plagiarism. We make two contributions to foster the research on detecting these novel machine-paraphrases. First, we provide the first large-scale dataset of documents paraphrased using the Transformer-based models BERT, RoBERTa, and Longformer. The dataset includes paragraphs from scientific papers on arXiv, theses, and Wikipedia articles and their paraphrased counterparts (1.5M paragraphs in total). We show the paraphrased text maintains the semantics of the original source. Second, we benchmark how well neural classification models can distinguish the original and paraphrased text. The dataset and source code of our study are publicly available.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection\",\"authors\":\"Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp\",\"doi\":\"10.1109/JCDL52503.2021.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural language models such as BERT allow for human-like text paraphrasing. This ability threatens academic integrity, as it aggravates identifying machine-obfuscated plagiarism. We make two contributions to foster the research on detecting these novel machine-paraphrases. First, we provide the first large-scale dataset of documents paraphrased using the Transformer-based models BERT, RoBERTa, and Longformer. The dataset includes paragraphs from scientific papers on arXiv, theses, and Wikipedia articles and their paraphrased counterparts (1.5M paragraphs in total). We show the paraphrased text maintains the semantics of the original source. Second, we benchmark how well neural classification models can distinguish the original and paraphrased text. The dataset and source code of our study are publicly available.\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection
Neural language models such as BERT allow for human-like text paraphrasing. This ability threatens academic integrity, as it aggravates identifying machine-obfuscated plagiarism. We make two contributions to foster the research on detecting these novel machine-paraphrases. First, we provide the first large-scale dataset of documents paraphrased using the Transformer-based models BERT, RoBERTa, and Longformer. The dataset includes paragraphs from scientific papers on arXiv, theses, and Wikipedia articles and their paraphrased counterparts (1.5M paragraphs in total). We show the paraphrased text maintains the semantics of the original source. Second, we benchmark how well neural classification models can distinguish the original and paraphrased text. The dataset and source code of our study are publicly available.