神经语言模型是好的剽窃者吗?神经释义检测的基准

Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp
{"title":"神经语言模型是好的剽窃者吗?神经释义检测的基准","authors":"Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp","doi":"10.1109/JCDL52503.2021.00065","DOIUrl":null,"url":null,"abstract":"Neural language models such as BERT allow for human-like text paraphrasing. This ability threatens academic integrity, as it aggravates identifying machine-obfuscated plagiarism. We make two contributions to foster the research on detecting these novel machine-paraphrases. First, we provide the first large-scale dataset of documents paraphrased using the Transformer-based models BERT, RoBERTa, and Longformer. The dataset includes paragraphs from scientific papers on arXiv, theses, and Wikipedia articles and their paraphrased counterparts (1.5M paragraphs in total). We show the paraphrased text maintains the semantics of the original source. Second, we benchmark how well neural classification models can distinguish the original and paraphrased text. The dataset and source code of our study are publicly available.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection\",\"authors\":\"Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp\",\"doi\":\"10.1109/JCDL52503.2021.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural language models such as BERT allow for human-like text paraphrasing. This ability threatens academic integrity, as it aggravates identifying machine-obfuscated plagiarism. We make two contributions to foster the research on detecting these novel machine-paraphrases. First, we provide the first large-scale dataset of documents paraphrased using the Transformer-based models BERT, RoBERTa, and Longformer. The dataset includes paragraphs from scientific papers on arXiv, theses, and Wikipedia articles and their paraphrased counterparts (1.5M paragraphs in total). We show the paraphrased text maintains the semantics of the original source. Second, we benchmark how well neural classification models can distinguish the original and paraphrased text. The dataset and source code of our study are publicly available.\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

像BERT这样的神经语言模型允许类似人类的文本释义。这种能力威胁到学术诚信,因为它加剧了对机器混淆的抄袭的识别。我们为促进检测这些新型机器释义的研究做出了两方面的贡献。首先,我们提供了使用基于transformer的模型BERT、RoBERTa和Longformer改写的第一个大规模文档数据集。该数据集包括来自arXiv上的科学论文、论文和维基百科文章及其释义的段落(总共150万段)。我们表明改写的文本保持了原始来源的语义。其次,我们对神经分类模型区分原文和释义文本的能力进行了基准测试。我们研究的数据集和源代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection
Neural language models such as BERT allow for human-like text paraphrasing. This ability threatens academic integrity, as it aggravates identifying machine-obfuscated plagiarism. We make two contributions to foster the research on detecting these novel machine-paraphrases. First, we provide the first large-scale dataset of documents paraphrased using the Transformer-based models BERT, RoBERTa, and Longformer. The dataset includes paragraphs from scientific papers on arXiv, theses, and Wikipedia articles and their paraphrased counterparts (1.5M paragraphs in total). We show the paraphrased text maintains the semantics of the original source. Second, we benchmark how well neural classification models can distinguish the original and paraphrased text. The dataset and source code of our study are publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信