增强彩色图像量化的纹理分析

Jefferey A. Shufelt
{"title":"增强彩色图像量化的纹理分析","authors":"Jefferey A. Shufelt","doi":"10.1006/gmip.1997.0428","DOIUrl":null,"url":null,"abstract":"<div><p>A traditional problem with color image quantization techniques is their inability to handle smooth variations in intensity and chromaticity, leading to contours in the quantized image. To address this problem, this paper describes new techniques for augmenting the performance of a seminal color image quantization algorithm, the median-cut quantizer. Applying a simple texture analysis method from computer vision in conjunction with the median-cut algorithm using a new variant of a k-d tree, we show that contouring effects can be alleviated without resorting to dithering methods and the accompanying decrease in signal-to-noise ratio. The merits of this approach are evaluated using remotely sensed aerial imagery and synthetically generated scenes.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"59 3","pages":"Pages 149-163"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1997.0428","citationCount":"8","resultStr":"{\"title\":\"Texture Analysis for Enhanced Color Image Quantization\",\"authors\":\"Jefferey A. Shufelt\",\"doi\":\"10.1006/gmip.1997.0428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A traditional problem with color image quantization techniques is their inability to handle smooth variations in intensity and chromaticity, leading to contours in the quantized image. To address this problem, this paper describes new techniques for augmenting the performance of a seminal color image quantization algorithm, the median-cut quantizer. Applying a simple texture analysis method from computer vision in conjunction with the median-cut algorithm using a new variant of a k-d tree, we show that contouring effects can be alleviated without resorting to dithering methods and the accompanying decrease in signal-to-noise ratio. The merits of this approach are evaluated using remotely sensed aerial imagery and synthetically generated scenes.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"59 3\",\"pages\":\"Pages 149-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1997.0428\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316997904287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316997904287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

彩色图像量化技术的一个传统问题是它们无法处理亮度和色度的平滑变化,从而导致量化图像中的轮廓。为了解决这个问题,本文描述了一种新的技术来增强一种开创性的彩色图像量化算法的性能,即中值切割量化器。将计算机视觉中的简单纹理分析方法与使用k-d树的新变体的中值切割算法相结合,我们表明可以在不使用抖动方法和伴随的信噪比降低的情况下减轻轮廓效果。利用遥感航拍图像和合成场景对该方法的优点进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture Analysis for Enhanced Color Image Quantization

A traditional problem with color image quantization techniques is their inability to handle smooth variations in intensity and chromaticity, leading to contours in the quantized image. To address this problem, this paper describes new techniques for augmenting the performance of a seminal color image quantization algorithm, the median-cut quantizer. Applying a simple texture analysis method from computer vision in conjunction with the median-cut algorithm using a new variant of a k-d tree, we show that contouring effects can be alleviated without resorting to dithering methods and the accompanying decrease in signal-to-noise ratio. The merits of this approach are evaluated using remotely sensed aerial imagery and synthetically generated scenes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信