{"title":"利用高级和低级特性进行多媒体事件检测","authors":"Lu Jiang, Alexander Hauptmann, Guang Xiang","doi":"10.1145/2393347.2393412","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of Multimedia Event Detection by proposing a novel method for high-level and low-level features fusion based on collective classification. Generally, the method consists of three steps: training a classifier from low-level features; encoding high-level features into graphs; and diffusing the scores on the established graph to obtain the final prediction. The final prediction is derived from multiple graphs each of which corresponds to a high-level feature. The paper investigates two graph construction methods using logarithmic and exponential loss functions, respectively and two collective classification algorithms, i.e. Gibbs sampling and Markov random walk. The theoretical analysis demonstrates that the proposed method converges and is computationally scalable and the empirical analysis on TRECVID 2011 Multimedia Event Detection dataset validates its outstanding performance compared to state-of-the-art methods, with an added benefit of interpretability.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Leveraging high-level and low-level features for multimedia event detection\",\"authors\":\"Lu Jiang, Alexander Hauptmann, Guang Xiang\",\"doi\":\"10.1145/2393347.2393412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the challenge of Multimedia Event Detection by proposing a novel method for high-level and low-level features fusion based on collective classification. Generally, the method consists of three steps: training a classifier from low-level features; encoding high-level features into graphs; and diffusing the scores on the established graph to obtain the final prediction. The final prediction is derived from multiple graphs each of which corresponds to a high-level feature. The paper investigates two graph construction methods using logarithmic and exponential loss functions, respectively and two collective classification algorithms, i.e. Gibbs sampling and Markov random walk. The theoretical analysis demonstrates that the proposed method converges and is computationally scalable and the empirical analysis on TRECVID 2011 Multimedia Event Detection dataset validates its outstanding performance compared to state-of-the-art methods, with an added benefit of interpretability.\",\"PeriodicalId\":212654,\"journal\":{\"name\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2393347.2393412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2393412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging high-level and low-level features for multimedia event detection
This paper addresses the challenge of Multimedia Event Detection by proposing a novel method for high-level and low-level features fusion based on collective classification. Generally, the method consists of three steps: training a classifier from low-level features; encoding high-level features into graphs; and diffusing the scores on the established graph to obtain the final prediction. The final prediction is derived from multiple graphs each of which corresponds to a high-level feature. The paper investigates two graph construction methods using logarithmic and exponential loss functions, respectively and two collective classification algorithms, i.e. Gibbs sampling and Markov random walk. The theoretical analysis demonstrates that the proposed method converges and is computationally scalable and the empirical analysis on TRECVID 2011 Multimedia Event Detection dataset validates its outstanding performance compared to state-of-the-art methods, with an added benefit of interpretability.