利用高级和低级特性进行多媒体事件检测

Lu Jiang, Alexander Hauptmann, Guang Xiang
{"title":"利用高级和低级特性进行多媒体事件检测","authors":"Lu Jiang, Alexander Hauptmann, Guang Xiang","doi":"10.1145/2393347.2393412","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of Multimedia Event Detection by proposing a novel method for high-level and low-level features fusion based on collective classification. Generally, the method consists of three steps: training a classifier from low-level features; encoding high-level features into graphs; and diffusing the scores on the established graph to obtain the final prediction. The final prediction is derived from multiple graphs each of which corresponds to a high-level feature. The paper investigates two graph construction methods using logarithmic and exponential loss functions, respectively and two collective classification algorithms, i.e. Gibbs sampling and Markov random walk. The theoretical analysis demonstrates that the proposed method converges and is computationally scalable and the empirical analysis on TRECVID 2011 Multimedia Event Detection dataset validates its outstanding performance compared to state-of-the-art methods, with an added benefit of interpretability.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Leveraging high-level and low-level features for multimedia event detection\",\"authors\":\"Lu Jiang, Alexander Hauptmann, Guang Xiang\",\"doi\":\"10.1145/2393347.2393412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the challenge of Multimedia Event Detection by proposing a novel method for high-level and low-level features fusion based on collective classification. Generally, the method consists of three steps: training a classifier from low-level features; encoding high-level features into graphs; and diffusing the scores on the established graph to obtain the final prediction. The final prediction is derived from multiple graphs each of which corresponds to a high-level feature. The paper investigates two graph construction methods using logarithmic and exponential loss functions, respectively and two collective classification algorithms, i.e. Gibbs sampling and Markov random walk. The theoretical analysis demonstrates that the proposed method converges and is computationally scalable and the empirical analysis on TRECVID 2011 Multimedia Event Detection dataset validates its outstanding performance compared to state-of-the-art methods, with an added benefit of interpretability.\",\"PeriodicalId\":212654,\"journal\":{\"name\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2393347.2393412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2393412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

本文提出了一种基于集体分类的高、低特征融合方法,解决了多媒体事件检测的难题。一般来说,该方法包括三个步骤:从低级特征训练分类器;将高级特征编码成图形;并将分数扩散到已建立的图上,得到最终的预测结果。最终的预测来自多个图,每个图对应一个高级特征。本文分别研究了对数损失函数和指数损失函数两种图的构造方法,以及Gibbs抽样和Markov随机漫步两种集体分类算法。理论分析表明,所提出的方法具有收敛性和计算可扩展性,对TRECVID 2011多媒体事件检测数据集的实证分析验证了其与最先进的方法相比的卓越性能,并具有可解释性的额外好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging high-level and low-level features for multimedia event detection
This paper addresses the challenge of Multimedia Event Detection by proposing a novel method for high-level and low-level features fusion based on collective classification. Generally, the method consists of three steps: training a classifier from low-level features; encoding high-level features into graphs; and diffusing the scores on the established graph to obtain the final prediction. The final prediction is derived from multiple graphs each of which corresponds to a high-level feature. The paper investigates two graph construction methods using logarithmic and exponential loss functions, respectively and two collective classification algorithms, i.e. Gibbs sampling and Markov random walk. The theoretical analysis demonstrates that the proposed method converges and is computationally scalable and the empirical analysis on TRECVID 2011 Multimedia Event Detection dataset validates its outstanding performance compared to state-of-the-art methods, with an added benefit of interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信