量化复制对云数据库服务质量的影响

Rasha Osman, Juan F. Pérez, G. Casale
{"title":"量化复制对云数据库服务质量的影响","authors":"Rasha Osman, Juan F. Pérez, G. Casale","doi":"10.1109/QRS.2016.40","DOIUrl":null,"url":null,"abstract":"Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning.","PeriodicalId":412973,"journal":{"name":"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantifying the Impact of Replication on the Quality-of-Service in Cloud Databases\",\"authors\":\"Rasha Osman, Juan F. Pérez, G. Casale\",\"doi\":\"10.1109/QRS.2016.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning.\",\"PeriodicalId\":412973,\"journal\":{\"name\":\"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS.2016.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云数据库通过在多个节点上自动复制数据来实现高可用性。但是,复制过程造成的开销可能导致事务响应时间的平均值和方差增加,从而对提供的服务质量(QoS)造成不可预见的影响。在本文中,我们提出了一种测量驱动的方法来预测复制对数据库即服务(DBaaS)环境的影响。我们的方法使用操作数据来参数化数据库集群的封闭排队网络模型以及抽象动态复制过程的马尔可夫模型。在Amazon RDS上的实验表明,我们的方法预测响应时间平均值和百分位数的误差分别仅为1%和15%,并且在与模型参数化明显不同的操作条件下。我们展示了我们的建模方法超越了标准的建模方法,并说明了我们的方法对自动化DBaaS供应的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the Impact of Replication on the Quality-of-Service in Cloud Databases
Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信