基于广义排序码本矢量量化的语音频谱编码

H.R.S. Mohammadi
{"title":"基于广义排序码本矢量量化的语音频谱编码","authors":"H.R.S. Mohammadi","doi":"10.1109/ICOSP.1998.770275","DOIUrl":null,"url":null,"abstract":"Sorted codebook vector quantization (SCVQ) is shown to be a very efficient vector quantization method. Generalization of SCVQ is suggested and its application to the spectral coding of speech using the quantization of line spectral frequencies (LSF), which are the most popular parameters to represent the linear prediction model for spectrum quantization in speech coders, is described. Computer simulations are conducted to evaluate the performance of the new method. We demonstrate that the new method achieves superior quality and has low implementation costs.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral coding of speech based on generalized sorted codebook vector quantization\",\"authors\":\"H.R.S. Mohammadi\",\"doi\":\"10.1109/ICOSP.1998.770275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorted codebook vector quantization (SCVQ) is shown to be a very efficient vector quantization method. Generalization of SCVQ is suggested and its application to the spectral coding of speech using the quantization of line spectral frequencies (LSF), which are the most popular parameters to represent the linear prediction model for spectrum quantization in speech coders, is described. Computer simulations are conducted to evaluate the performance of the new method. We demonstrate that the new method achieves superior quality and has low implementation costs.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

排序码本矢量量化(SCVQ)是一种非常有效的矢量量化方法。提出了SCVQ的泛化方法,并描述了其在语音编码中使用线谱频率量化(LSF)进行语音频谱编码的应用,LSF是表示语音编码中频谱量化的线性预测模型的最常用参数。通过计算机仿真对新方法的性能进行了评价。结果表明,该方法具有较好的质量和较低的实施成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral coding of speech based on generalized sorted codebook vector quantization
Sorted codebook vector quantization (SCVQ) is shown to be a very efficient vector quantization method. Generalization of SCVQ is suggested and its application to the spectral coding of speech using the quantization of line spectral frequencies (LSF), which are the most popular parameters to represent the linear prediction model for spectrum quantization in speech coders, is described. Computer simulations are conducted to evaluate the performance of the new method. We demonstrate that the new method achieves superior quality and has low implementation costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信