{"title":"基于并行近似基序计数的复杂网络分析","authors":"George M. Slota, Kamesh Madduri","doi":"10.1109/IPDPS.2014.50","DOIUrl":null,"url":null,"abstract":"Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-motif finding, relative graph let frequency distance, and graph let degree distribution agreements. Determining exact subgraph counts is computationally very expensive. In recent work, we present FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting. FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive enumeration, while generating high-quality approximations of subgraph counts. However, the memory usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the dynamic programming table. We discuss a new collective communication scheme to make the dynamic programming step memory-efficient. These optimizations enable scaling to much larger networks than before. We also present a simple parallelization strategy for distributed subgraph counting on smaller networks. The new additions let us use subgraph counts as graph signatures for a large network collection, and we analyze this collection using various subgraph count-based graph analytics.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Complex Network Analysis Using Parallel Approximate Motif Counting\",\"authors\":\"George M. Slota, Kamesh Madduri\",\"doi\":\"10.1109/IPDPS.2014.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-motif finding, relative graph let frequency distance, and graph let degree distribution agreements. Determining exact subgraph counts is computationally very expensive. In recent work, we present FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting. FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive enumeration, while generating high-quality approximations of subgraph counts. However, the memory usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the dynamic programming table. We discuss a new collective communication scheme to make the dynamic programming step memory-efficient. These optimizations enable scaling to much larger networks than before. We also present a simple parallelization strategy for distributed subgraph counting on smaller networks. The new additions let us use subgraph counts as graph signatures for a large network collection, and we analyze this collection using various subgraph count-based graph analytics.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complex Network Analysis Using Parallel Approximate Motif Counting
Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-motif finding, relative graph let frequency distance, and graph let degree distribution agreements. Determining exact subgraph counts is computationally very expensive. In recent work, we present FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting. FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive enumeration, while generating high-quality approximations of subgraph counts. However, the memory usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the dynamic programming table. We discuss a new collective communication scheme to make the dynamic programming step memory-efficient. These optimizations enable scaling to much larger networks than before. We also present a simple parallelization strategy for distributed subgraph counting on smaller networks. The new additions let us use subgraph counts as graph signatures for a large network collection, and we analyze this collection using various subgraph count-based graph analytics.