电子邮件分类领域中多标签学习的特征提取

José M. Carmona-Cejudo, Manuel Baena-García, J. D. Campo-Ávila, Rafael Morales Bueno
{"title":"电子邮件分类领域中多标签学习的特征提取","authors":"José M. Carmona-Cejudo, Manuel Baena-García, J. D. Campo-Ávila, Rafael Morales Bueno","doi":"10.1109/CIDM.2011.5949301","DOIUrl":null,"url":null,"abstract":"Multi-label learning is a very interesting field in Machine Learning. It allows to generalise standard methods and evaluation procedures, and tackle challenging real problems where one example can be tagged with more than one label. In this paper we study the performance of different multi-label methods in combination with standard single-label algorithms, using several specific multi-label metrics. What we want to show is how a good preprocessing phase can improve the performance of such methods and algorithms. As we will explain, its main advantage is a shorter time to induce the models, while keeping (even improving) other classification quality measures. We use the GNUsmail framework to do the preprocessing of an existing and extensively used dataset, to obtain a reduced feature space that conserves the relevant information and allows improvements on performance. Thanks to the capabilities of GNUsmail, the preprocessing step can be easily applied to different email datasets.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature extraction for multi-label learning in the domain of email classification\",\"authors\":\"José M. Carmona-Cejudo, Manuel Baena-García, J. D. Campo-Ávila, Rafael Morales Bueno\",\"doi\":\"10.1109/CIDM.2011.5949301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label learning is a very interesting field in Machine Learning. It allows to generalise standard methods and evaluation procedures, and tackle challenging real problems where one example can be tagged with more than one label. In this paper we study the performance of different multi-label methods in combination with standard single-label algorithms, using several specific multi-label metrics. What we want to show is how a good preprocessing phase can improve the performance of such methods and algorithms. As we will explain, its main advantage is a shorter time to induce the models, while keeping (even improving) other classification quality measures. We use the GNUsmail framework to do the preprocessing of an existing and extensively used dataset, to obtain a reduced feature space that conserves the relevant information and allows improvements on performance. Thanks to the capabilities of GNUsmail, the preprocessing step can be easily applied to different email datasets.\",\"PeriodicalId\":211565,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2011.5949301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

多标签学习是机器学习中一个非常有趣的领域。它允许推广标准方法和评估程序,并解决具有挑战性的实际问题,其中一个示例可以使用多个标签进行标记。在本文中,我们使用几个特定的多标签度量来研究不同的多标签方法与标准单标签算法相结合的性能。我们想展示的是良好的预处理阶段如何提高这些方法和算法的性能。正如我们将解释的那样,它的主要优点是可以缩短归纳模型的时间,同时保持(甚至改进)其他分类质量度量。我们使用GNUsmail框架对现有的和广泛使用的数据集进行预处理,以获得减少的特征空间,以保存相关信息并允许改进性能。由于GNUsmail的功能,预处理步骤可以很容易地应用于不同的电子邮件数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction for multi-label learning in the domain of email classification
Multi-label learning is a very interesting field in Machine Learning. It allows to generalise standard methods and evaluation procedures, and tackle challenging real problems where one example can be tagged with more than one label. In this paper we study the performance of different multi-label methods in combination with standard single-label algorithms, using several specific multi-label metrics. What we want to show is how a good preprocessing phase can improve the performance of such methods and algorithms. As we will explain, its main advantage is a shorter time to induce the models, while keeping (even improving) other classification quality measures. We use the GNUsmail framework to do the preprocessing of an existing and extensively used dataset, to obtain a reduced feature space that conserves the relevant information and allows improvements on performance. Thanks to the capabilities of GNUsmail, the preprocessing step can be easily applied to different email datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信