针对入侵检测的大型数据库有效挖掘

Reza Adinehnia, N. Udzir, L. S. Affendey, I. Ishak, Z. Hanapi
{"title":"针对入侵检测的大型数据库有效挖掘","authors":"Reza Adinehnia, N. Udzir, L. S. Affendey, I. Ishak, Z. Hanapi","doi":"10.1109/ISBAST.2014.7013122","DOIUrl":null,"url":null,"abstract":"Data mining is a common automated way of generating normal patterns for intrusion detection systems. In this work a large dataset is customized to be suitable for both sequence mining and association rule learning. These two different mining methods are then tested and compared to find out which one produces more accurate valid patterns for the intrusion detection system.Results show that higher detection rate is achieved when using apriori algorithm on the proposed dataset. The main contribution of this work is the evaluation of the association rule learning that can be used for further studies in the field of database intrusion detection systems.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective mining on large databases for intrusion detection\",\"authors\":\"Reza Adinehnia, N. Udzir, L. S. Affendey, I. Ishak, Z. Hanapi\",\"doi\":\"10.1109/ISBAST.2014.7013122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is a common automated way of generating normal patterns for intrusion detection systems. In this work a large dataset is customized to be suitable for both sequence mining and association rule learning. These two different mining methods are then tested and compared to find out which one produces more accurate valid patterns for the intrusion detection system.Results show that higher detection rate is achieved when using apriori algorithm on the proposed dataset. The main contribution of this work is the evaluation of the association rule learning that can be used for further studies in the field of database intrusion detection systems.\",\"PeriodicalId\":292333,\"journal\":{\"name\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBAST.2014.7013122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据挖掘是一种为入侵检测系统生成正常模式的常用自动化方法。在这项工作中,一个大型数据集被定制为适合序列挖掘和关联规则学习。然后对这两种不同的挖掘方法进行测试和比较,找出哪一种方法可以为入侵检测系统产生更准确的有效模式。结果表明,在本文提出的数据集上使用先验算法可以获得更高的检测率。本文的主要贡献是对关联规则学习的评价,为数据库入侵检测系统的进一步研究提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective mining on large databases for intrusion detection
Data mining is a common automated way of generating normal patterns for intrusion detection systems. In this work a large dataset is customized to be suitable for both sequence mining and association rule learning. These two different mining methods are then tested and compared to find out which one produces more accurate valid patterns for the intrusion detection system.Results show that higher detection rate is achieved when using apriori algorithm on the proposed dataset. The main contribution of this work is the evaluation of the association rule learning that can be used for further studies in the field of database intrusion detection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信