并行图计算的新算法范式

Harshvardhan, Adam Fidel, N. Amato, Lawrence Rauchwerger
{"title":"并行图计算的新算法范式","authors":"Harshvardhan, Adam Fidel, N. Amato, Lawrence Rauchwerger","doi":"10.1145/2628071.2628091","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithmic paradigm — k-level asynchronous (KLA) — that bridges level-synchronous and asynchronous paradigms for processing graphs. The KLA paradigm enables the level of asynchrony in parallel graph algorithms to be parametrically varied from none (level-synchronous) to full (asynchronous). The motivation is to improve execution times through an appropriate trade-off between the use of fewer, but more expensive global synchronizations, as in level-synchronous algorithms, and more, but less expensive local synchronizations (and perhaps also redundant work), as in asynchronous algorithms. We show how common patterns in graph algorithms can be expressed in the KLA pardigm and provide techniques for determining k, the number of asynchronous steps allowed between global synchronizations. Results of an implementation of KLA in the STAPL Graph Library show excellent scalability on up to 96K cores and improvements of 10× or more over level-synchronous and asynchronous versions for graph algorithms such as breadth-first search, PageRank, k-core decomposition and others on certain classes of real-world graphs.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"KLA: A new algorithmic paradigm for parallel graph computations\",\"authors\":\"Harshvardhan, Adam Fidel, N. Amato, Lawrence Rauchwerger\",\"doi\":\"10.1145/2628071.2628091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new algorithmic paradigm — k-level asynchronous (KLA) — that bridges level-synchronous and asynchronous paradigms for processing graphs. The KLA paradigm enables the level of asynchrony in parallel graph algorithms to be parametrically varied from none (level-synchronous) to full (asynchronous). The motivation is to improve execution times through an appropriate trade-off between the use of fewer, but more expensive global synchronizations, as in level-synchronous algorithms, and more, but less expensive local synchronizations (and perhaps also redundant work), as in asynchronous algorithms. We show how common patterns in graph algorithms can be expressed in the KLA pardigm and provide techniques for determining k, the number of asynchronous steps allowed between global synchronizations. Results of an implementation of KLA in the STAPL Graph Library show excellent scalability on up to 96K cores and improvements of 10× or more over level-synchronous and asynchronous versions for graph algorithms such as breadth-first search, PageRank, k-core decomposition and others on certain classes of real-world graphs.\",\"PeriodicalId\":263670,\"journal\":{\"name\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2628071.2628091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2628091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

本文提出了一种新的算法范式- k级异步(KLA) -它连接了级别同步和异步范式来处理图。KLA范式允许并行图算法中的异步级别从无(同步级别)到完全(异步)参数化地变化。其动机是通过在使用更少但成本更高的全局同步(如在级别同步算法中)和使用更多但成本更低的本地同步(可能还有冗余工作)(如在异步算法中)之间进行适当的权衡来提高执行时间。我们将展示如何在KLA范式中表示图算法中的常见模式,并提供确定k(全局同步之间允许的异步步骤数)的技术。STAPL图库中KLA实现的结果显示,在高达96K核的情况下具有出色的可扩展性,并且对于图算法(如宽度优先搜索、PageRank、k核分解等),在某些实际图类上的性能比同级同步和异步版本提高了10倍或更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KLA: A new algorithmic paradigm for parallel graph computations
This paper proposes a new algorithmic paradigm — k-level asynchronous (KLA) — that bridges level-synchronous and asynchronous paradigms for processing graphs. The KLA paradigm enables the level of asynchrony in parallel graph algorithms to be parametrically varied from none (level-synchronous) to full (asynchronous). The motivation is to improve execution times through an appropriate trade-off between the use of fewer, but more expensive global synchronizations, as in level-synchronous algorithms, and more, but less expensive local synchronizations (and perhaps also redundant work), as in asynchronous algorithms. We show how common patterns in graph algorithms can be expressed in the KLA pardigm and provide techniques for determining k, the number of asynchronous steps allowed between global synchronizations. Results of an implementation of KLA in the STAPL Graph Library show excellent scalability on up to 96K cores and improvements of 10× or more over level-synchronous and asynchronous versions for graph algorithms such as breadth-first search, PageRank, k-core decomposition and others on certain classes of real-world graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信