运动去模糊的面孔

P. Anand, S. Sumam David, K. Sudeep
{"title":"运动去模糊的面孔","authors":"P. Anand, S. Sumam David, K. Sudeep","doi":"10.1109/RTEICT49044.2020.9315623","DOIUrl":null,"url":null,"abstract":"This paper evaluates learning-based data-driven models for deblurring of facial images. Existing algorithms for deblurring, when used for facial images, often fail to preserve the facial shape and identity information. The best available models, which are used for general-purpose image deblurring, are pre-trained using only facial images. The Peak Signal to Noise Ratio (PSNR) Structural Similarity Index Measure (SSIM) and Time to deblur single images are the key metrics used for evaluating the models and for finding the most efficient model for deblurring facial images. From the results, the observation is that even though the PSNR value for DeblurGANv2 model is the highest, the best trade off between PSNR, SSIM, Time to deblur and visual quality is seen in DeblurGAN model.","PeriodicalId":367246,"journal":{"name":"2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Deblurring of Faces\",\"authors\":\"P. Anand, S. Sumam David, K. Sudeep\",\"doi\":\"10.1109/RTEICT49044.2020.9315623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates learning-based data-driven models for deblurring of facial images. Existing algorithms for deblurring, when used for facial images, often fail to preserve the facial shape and identity information. The best available models, which are used for general-purpose image deblurring, are pre-trained using only facial images. The Peak Signal to Noise Ratio (PSNR) Structural Similarity Index Measure (SSIM) and Time to deblur single images are the key metrics used for evaluating the models and for finding the most efficient model for deblurring facial images. From the results, the observation is that even though the PSNR value for DeblurGANv2 model is the highest, the best trade off between PSNR, SSIM, Time to deblur and visual quality is seen in DeblurGAN model.\",\"PeriodicalId\":367246,\"journal\":{\"name\":\"2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT49044.2020.9315623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT49044.2020.9315623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了基于学习的数据驱动的面部图像去模糊模型。现有的去模糊算法,当用于面部图像时,往往不能保留面部形状和身份信息。用于通用图像去模糊的最佳可用模型仅使用面部图像进行预训练。峰值信噪比(PSNR)、结构相似指数度量(SSIM)和单个图像去模糊时间是评估模型和寻找最有效的面部图像去模糊模型的关键指标。从结果中可以观察到,尽管DeblurGANv2模型的PSNR值是最高的,但在DeblurGAN模型中可以看到PSNR、SSIM、去模糊时间和视觉质量之间的最佳权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Deblurring of Faces
This paper evaluates learning-based data-driven models for deblurring of facial images. Existing algorithms for deblurring, when used for facial images, often fail to preserve the facial shape and identity information. The best available models, which are used for general-purpose image deblurring, are pre-trained using only facial images. The Peak Signal to Noise Ratio (PSNR) Structural Similarity Index Measure (SSIM) and Time to deblur single images are the key metrics used for evaluating the models and for finding the most efficient model for deblurring facial images. From the results, the observation is that even though the PSNR value for DeblurGANv2 model is the highest, the best trade off between PSNR, SSIM, Time to deblur and visual quality is seen in DeblurGAN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信