{"title":"网格连接多计算机上并行体绘制算法的性能","authors":"U. Neumann","doi":"10.1145/166181.166196","DOIUrl":null,"url":null,"abstract":"This work examines the network performance of mesh-connected multicomputers applied to parallel volume rendering algorithms. This issue has not been addressed in papers describing particular parallel implementations, but is pertinent to anyone designing or implementing parallel rendering algorithms. Parallel volume rendering algorithms fall into two main classes-image and object partitions. Communication requirements for algorithms in these classes are analyzed. Network performance for these algorithms is estimated by using an existing model of mesh network behavior. The performance estimates are verified by tests on the Touchstone Delta. The results indicate that, for a fixed screen size, the performance of 2D mesh networks scales very well then used with object partition algorithms-the time required for communication actually decreases as the data and system sizes increase. A Touchstone Delta implementation of an object partition algorithm is briefly described to illustrate the algorithm's low communication requirements.","PeriodicalId":394370,"journal":{"name":"Proceedings of 1993 IEEE Parallel Rendering Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Parallel volume-rendering algorithm performance on mesh-connected multicomputers\",\"authors\":\"U. Neumann\",\"doi\":\"10.1145/166181.166196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines the network performance of mesh-connected multicomputers applied to parallel volume rendering algorithms. This issue has not been addressed in papers describing particular parallel implementations, but is pertinent to anyone designing or implementing parallel rendering algorithms. Parallel volume rendering algorithms fall into two main classes-image and object partitions. Communication requirements for algorithms in these classes are analyzed. Network performance for these algorithms is estimated by using an existing model of mesh network behavior. The performance estimates are verified by tests on the Touchstone Delta. The results indicate that, for a fixed screen size, the performance of 2D mesh networks scales very well then used with object partition algorithms-the time required for communication actually decreases as the data and system sizes increase. A Touchstone Delta implementation of an object partition algorithm is briefly described to illustrate the algorithm's low communication requirements.\",\"PeriodicalId\":394370,\"journal\":{\"name\":\"Proceedings of 1993 IEEE Parallel Rendering Symposium\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE Parallel Rendering Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/166181.166196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE Parallel Rendering Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/166181.166196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel volume-rendering algorithm performance on mesh-connected multicomputers
This work examines the network performance of mesh-connected multicomputers applied to parallel volume rendering algorithms. This issue has not been addressed in papers describing particular parallel implementations, but is pertinent to anyone designing or implementing parallel rendering algorithms. Parallel volume rendering algorithms fall into two main classes-image and object partitions. Communication requirements for algorithms in these classes are analyzed. Network performance for these algorithms is estimated by using an existing model of mesh network behavior. The performance estimates are verified by tests on the Touchstone Delta. The results indicate that, for a fixed screen size, the performance of 2D mesh networks scales very well then used with object partition algorithms-the time required for communication actually decreases as the data and system sizes increase. A Touchstone Delta implementation of an object partition algorithm is briefly described to illustrate the algorithm's low communication requirements.