使用机器学习对成本敏感的航班延误预测

Sun Choi, Young Jin Kim, Simon Briceno, D. Mavris
{"title":"使用机器学习对成本敏感的航班延误预测","authors":"Sun Choi, Young Jin Kim, Simon Briceno, D. Mavris","doi":"10.1109/DASC.2017.8102035","DOIUrl":null,"url":null,"abstract":"This study provides a framework combining the sampling method called costing and supervised machine teaming algorithms to predict individual flight delays. The costing method converts cost-insensitive classifiers to cost-sensitive ones by subsampling examples from the original training dataset according to their misclassification costs. A weighted error function has been newly defined to evaluate the model's performance considering misclassification costs. And the function is measured by the various cost ratio between false positive error and false negative error. The cost ratio shows the relative importance of delays class to on-time class. The weighted error rate varies with the cost ratio and the model can have lower weighted error rate when the cost ratio is 10.","PeriodicalId":130890,"journal":{"name":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Cost-sensitive prediction of airline delays using machine learning\",\"authors\":\"Sun Choi, Young Jin Kim, Simon Briceno, D. Mavris\",\"doi\":\"10.1109/DASC.2017.8102035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study provides a framework combining the sampling method called costing and supervised machine teaming algorithms to predict individual flight delays. The costing method converts cost-insensitive classifiers to cost-sensitive ones by subsampling examples from the original training dataset according to their misclassification costs. A weighted error function has been newly defined to evaluate the model's performance considering misclassification costs. And the function is measured by the various cost ratio between false positive error and false negative error. The cost ratio shows the relative importance of delays class to on-time class. The weighted error rate varies with the cost ratio and the model can have lower weighted error rate when the cost ratio is 10.\",\"PeriodicalId\":130890,\"journal\":{\"name\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2017.8102035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2017.8102035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本研究提供了一个框架,结合称为成本的抽样方法和监督机器团队算法来预测个别航班延误。成本法通过对原始训练数据集中的错误分类代价进行抽样,将代价不敏感分类器转换为代价敏感分类器。新定义了一个考虑误分类代价的加权误差函数来评价模型的性能。并通过假阳性误差与假阴性误差之间的各种代价比来测量该函数。成本比显示了延误班与准时班的相对重要性。加权错误率随成本比的变化而变化,当成本比为10时,模型的加权错误率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-sensitive prediction of airline delays using machine learning
This study provides a framework combining the sampling method called costing and supervised machine teaming algorithms to predict individual flight delays. The costing method converts cost-insensitive classifiers to cost-sensitive ones by subsampling examples from the original training dataset according to their misclassification costs. A weighted error function has been newly defined to evaluate the model's performance considering misclassification costs. And the function is measured by the various cost ratio between false positive error and false negative error. The cost ratio shows the relative importance of delays class to on-time class. The weighted error rate varies with the cost ratio and the model can have lower weighted error rate when the cost ratio is 10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信