视频中叶子的识别

M. Naveena, Vidyashankara, G. Kumar
{"title":"视频中叶子的识别","authors":"M. Naveena, Vidyashankara, G. Kumar","doi":"10.35940/ijies.l0946.025820","DOIUrl":null,"url":null,"abstract":"The aim of this paper work is to design a user independent framework for recognizing and classifying the leaves in a video frames. This project involves classification of leaves using KNN (K- Nearest Neighbor) as a classifier. SURF (Speeded-Up Robust Features) and LBP (Local Binary Pattern) features are used for extracting Scale ,Orientation etc., In the first step our proposed model can extract most distinguish key-frames and then from extracted key-frames it detects the leaf color and recognize the different class of leaves.","PeriodicalId":281681,"journal":{"name":"International Journal of Inventive Engineering and Sciences","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of Leaves in Videos\",\"authors\":\"M. Naveena, Vidyashankara, G. Kumar\",\"doi\":\"10.35940/ijies.l0946.025820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper work is to design a user independent framework for recognizing and classifying the leaves in a video frames. This project involves classification of leaves using KNN (K- Nearest Neighbor) as a classifier. SURF (Speeded-Up Robust Features) and LBP (Local Binary Pattern) features are used for extracting Scale ,Orientation etc., In the first step our proposed model can extract most distinguish key-frames and then from extracted key-frames it detects the leaf color and recognize the different class of leaves.\",\"PeriodicalId\":281681,\"journal\":{\"name\":\"International Journal of Inventive Engineering and Sciences\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Inventive Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijies.l0946.025820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inventive Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijies.l0946.025820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是设计一个独立于用户的框架来识别和分类视频帧中的叶子。这个项目涉及使用KNN (K-最近邻)作为分类器对叶子进行分类。利用SURF(加速鲁棒特征)和LBP(局部二值模式)特征提取尺度、方向等特征,首先提取出大部分可区分的关键帧,然后从提取的关键帧中检测出叶子的颜色并识别出不同类别的叶子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Leaves in Videos
The aim of this paper work is to design a user independent framework for recognizing and classifying the leaves in a video frames. This project involves classification of leaves using KNN (K- Nearest Neighbor) as a classifier. SURF (Speeded-Up Robust Features) and LBP (Local Binary Pattern) features are used for extracting Scale ,Orientation etc., In the first step our proposed model can extract most distinguish key-frames and then from extracted key-frames it detects the leaf color and recognize the different class of leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信