{"title":"用于超声相控成像的256元密度锥形螺旋矩阵","authors":"A. Ramalli, P. Tortoli","doi":"10.1109/ULTSYM.2014.0520","DOIUrl":null,"url":null,"abstract":"The increasing interest in 3D ultrasound imaging is pushing the development of 2D probes with a challenging number (N) of active elements. The most popular approach in order to contain N is the sparse array technique. Here the design of the array layout requires complex optimization algorithms, which are typically constrained by a few steering conditions. Ungridded extensions of the sparse array technique offer improved performance by adding a further degree of freedom in the optimization process. In this paper, it is proposed to design the layout of large circular arrays with limited N according to Fermat's spiral seeds with spatial density modulation. This deterministic, aperiodic and balanced positioning procedure aims at guaranteeing uniform performance over a wide range of steering angles. The capabilities of the method is demonstrated by simulation comparing the performance of spiral and dense arrays.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"256-element density-tapered spiral matrices for ultrasound phased imaging\",\"authors\":\"A. Ramalli, P. Tortoli\",\"doi\":\"10.1109/ULTSYM.2014.0520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest in 3D ultrasound imaging is pushing the development of 2D probes with a challenging number (N) of active elements. The most popular approach in order to contain N is the sparse array technique. Here the design of the array layout requires complex optimization algorithms, which are typically constrained by a few steering conditions. Ungridded extensions of the sparse array technique offer improved performance by adding a further degree of freedom in the optimization process. In this paper, it is proposed to design the layout of large circular arrays with limited N according to Fermat's spiral seeds with spatial density modulation. This deterministic, aperiodic and balanced positioning procedure aims at guaranteeing uniform performance over a wide range of steering angles. The capabilities of the method is demonstrated by simulation comparing the performance of spiral and dense arrays.\",\"PeriodicalId\":153901,\"journal\":{\"name\":\"2014 IEEE International Ultrasonics Symposium\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2014.0520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
256-element density-tapered spiral matrices for ultrasound phased imaging
The increasing interest in 3D ultrasound imaging is pushing the development of 2D probes with a challenging number (N) of active elements. The most popular approach in order to contain N is the sparse array technique. Here the design of the array layout requires complex optimization algorithms, which are typically constrained by a few steering conditions. Ungridded extensions of the sparse array technique offer improved performance by adding a further degree of freedom in the optimization process. In this paper, it is proposed to design the layout of large circular arrays with limited N according to Fermat's spiral seeds with spatial density modulation. This deterministic, aperiodic and balanced positioning procedure aims at guaranteeing uniform performance over a wide range of steering angles. The capabilities of the method is demonstrated by simulation comparing the performance of spiral and dense arrays.